

Denison Mines (USA) Corp. 1050 17th Street, Suite 950 Denver, CO 80265 USA

Tel: 303 628-7798 Fax: 303 389-4125

www.denisonmines.com

December 4, 2007

VIA FEDERAL EXPRESS

Mr. Dane Finerfrock
Executive Secretary
Utah Radiation Control Board
State of Utah Department of Environmental Quality
168 North 1950 West
Salt Lake City, UT 84114-4850

Dear Mr. Finerfrock:

Re: Transmittal of the 3rd Quarter 2007 Chloroform Monitoring Report for the White Mesa Uranium Mill

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 3rd Quarter of 2007, as required under the State of Utah Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No UGQ-20-1

Yours very truly,

DENISON MINES (USA) CORP.

Steven D. Landau

Manager, Environmental Affairs

Cc: Ron Hochstein David Frydenlund David Turk

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah
Notice of Violation and Groundwater Corrective Action Order UDEQ
Docket No. UGQ-20-01

3rd Quarter (July through September) 2007

Prepared by:

Denison Mines (USA) Corp. (DUSA) 1050 17th Street, Suite 950 Denver CO 80265

1. INTRODUCTION

This is the Quarterly Chloroform Monitoring Report, as required under State of Utah Notice of Violation and Groundwater Corrective Action Order State of Utah Department of Environmental Quality ("UDEQ") Docket No. UGQ-20-01 for the 3rd Quarter of 2007 (the "Quarter") for Denison Mines (USA) Corp.'s ("DUSA's") White Mesa Uranium Mill (the "Mill"). This Report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, TW4-15 (MW-26) and TW4-20 for the Quarter.

2. SAMPLING AND MONITORING PLAN

2.1. Description of Monitor Wells Sampled During the Quarter

During the Quarter, the following chloroform contaminant investigation groundwater samples and measurements were taken:

2.1.1. Groundwater Monitoring

Groundwater Monitoring was performed in all of the chloroform monitoring wells, being the following wells:

- MW-4
- TW4-A
- TW4-1
- TW4-2
- TW4-3
- TW4-4
- TW4-5
- TW4-6
- TW4-7
- TW4-8
- TW4-9
- TW4-10
- TW4-11
- TW4-12

- TW4-13
- TW4-14
- TW4-15 (MW-26)
- TW4-16
- TW4-17 (MW-32)
- TW4-18
- TW4-19
- TW4-20
- TW4-21
- TW4-22
- TW4-23
- TW4-24
- TW4-25

The locations of these wells are indicated on the map attached under Tab A.

Wells sampled during this reporting period were analyzed for the following constituents:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrogen, Nitrate + Nitrite as N

As UDEQ is aware, Denison has experienced difficulty in obtaining chloroform samples from well TW4-14. The difficulty arises from the very limited recovery rate encountered at that location. More specifically, it is generally necessary that there be at least 1.5 feet of water within the well in order to obtain a sample which is not influenced by sedimentation from the bottom of the well. At the request of UDEQ, the recovery rate from the TW4-14 location was evaluated by bailing and routine water level measurements in order to determine the necessary time between purging and sample collection. Such an evaluation was undertaken between September 21 and October 20, 2006 with limited success in water recovery experienced during this study period. Nonetheless, quarterly samples were able to be collected from well TW4-14 during the 4th Quarter of 2006 (November 8, 2006), this has continued in both the 1st and 2nd, and 3rd quarters of 2007. Because of the limited data base for MW-14, trend analyses is premature and will await the collection of four quarters of data prior inclusion within the graphic display at Tab L of this report.

2.1.2. Groundwater Head Monitoring

Depth to groundwater was taken in the following wells and/or piezometers during the Quarter:

- a) All of the chloroform contaminant investigation wells listed in paragraph 2.1.1 above on August 14, 2007;
- b) All of the point of compliance monitoring wells under the Mill's Groundwater Discharge Permit ("GWDP") on 8-27-07 except MW-20 and MW-22 which were measured on 8-24-07.
- c) Piezometers P-1, P-2, P-3, P-4 and P-5 on August 24, 2007

In addition, weekly depth to groundwater measurements were taken in MW-4, TW4-15 (MW-26), TW4-19 and TW4-20, as part of the long term pumping test for MW-4.

2.2. Sampling Methodology, Equipment and Decontamination Procedures

The sampling methodology, equipment and decontamination procedures that were performed for the chloroform contaminant investigation during the Quarter can be summarized as follows:

2.2.1. Well Purging and Depth to Groundwater

a) A list is gathered of the wells in order of increasing chloroform contamination. The order for purging is thus established. Mill personnel start purging with all of the non-detect wells and then move to the more contaminated wells in order of chloroform contamination, starting with the wells having the lowest chloroform contamination; and b) Before leaving the Mill office, the pump and hose are rinsed with de-ionized ("DI") water. Mill personnel then proceed to the first well which is the well indicating the lowest concentration of chloroform based on the previous quarters sampling results. Well depth measurements are taken and the two casing volumes are calculated (measurements are made using the same instrument used for the monitoring wells under the Mill's GWDP). The Grundfos pump (a 6 gpm pump) is then lowered to the bottom of the well and purging is begun. At the first well, the purge rate is established for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the first well has been completed, the pump is removed from the well and the process is repeated at each well location moving from least contaminated to most contaminated. All wells are capped and secured prior to leaving the sampling location.

2.2.2. Sampling

- a) Following the purging of all chloroform investigation wells, the sampling takes place (usually the next morning). Prior to leaving the Mill office to sample, a cooler along with blue ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are the outfitted with rubber gloves. Chloroform investigation samples are collected by means of dedicated bailers and the wells are purged by means of a dedicated portable pump. Each quarterly pumping and sample collection event begins at the location least affected by chloroform (based on the previous quarters sampling event) and proceeds by affected concentration to the most affected location. The dedicated portable pump is appropriately decontaminated prior to each purging sampling event and the QA rinsate sample is collected after said decontamination but prior to the commencement of the sampling event.
- b) Mill personnel use a disposable bailer to sample each well. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows;
 - (i) First, a set of VOC vials is filled. This set consists of three 40 ml vials provided by the Analytical Laboratory. The set is not filtered and is preserved with HCL;
 - (ii) Second, a 500 ml sample is collected for Nitrates/Nitrites. This sample is also not filtered and is preserved with H2SO4 (the bottle for this set is also provided by the Analytical Laboratory);
 - (iii) Third, a 500 ml sample is collected for Chloride. This sample is not filtered and is not preserved; and

c) After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains blue ice. The well is then recapped and Mill personnel proceed to the next well.

DUSA completed (and transmitted to UDEQ on May 25, 2006) a revised Quality Assurance Plan ("QAP") for sampling under the Mill's GWDP. The GWDP QAP was reviewed by UDEQ and has been approved for implementation. The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP. While the water sampling conducted for chloroform investigation purposes has been conformant with the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented prior to UDEQ's approval for reasons set out in correspondence to UDEQ dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, DUSA discussed the issues brought forward in the letter with UDEQ and has received correspondence from UDEQ about those issues. In response to UDEQ's letter and subsequent discussions with UDEQ, DUSA has incorporated changes in chloroform QA procedures in the form of a separate document. The chloroform QA document describes the differing needs of the chloroform investigation program, and is and attachment to the GWDP QAP where QA needs other than those described in the chloroform QA document are addressed.

2.3 Field Data Worksheets

Attached under Tab B are copies of all Field Data Worksheets that were completed during the Quarter for the chloroform contaminant investigation monitoring wells listed in paragraph 2.1.1 above and sampled August 15, 2007.

2.4 Depth to Groundwater Sheets

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, TW4-15 (MW-26), TW4-19 and TW4-20 as well as the monthly depth to groundwater monitoring data for chloroform contaminant investigation wells measured during the quarter. Depth-to-groundwater measurements collected on August 14, 2007 which were utilized for groundwater contours are included on the Field Data Worksheets at Tab B of this report.

3. DATA INTERPRETATION

3.1. Interpretation of Groundwater Levels, Gradients and Flow Directions.

3.1.1. Current Site Groundwater Contour Map

Included under Tab D is a water table contour map, which provides the location of all of the wells and piezometers listed in item 2.1.2 above for which depth to groundwater was taken during the Quarter, the groundwater elevation at each such well and piezometer, measured in feet above mean sea level, and isocontour lines to delineate groundwater flow directions observed during the Quarter's sampling event. The contour map uses the

August 14, 2007 data for the wells listed in paragraph 2.1.2 (a) above, August 27, 2007 data for the wells listed in paragraph 2.1.2 (b) (except MW20 & MW22 where elevations were collected on August 24), and August 24, 2007 for the piezometers listed in paragraph 2.1.2 (c) above.

Also included under Tab D is a groundwater contour map of the portion of the Mill site where the four chloroform pumping wells are located, with hand-drawn stream tubes, in order to demonstrate hydraulic capture from the pumping

3.1.2. <u>Comparison of Current Groundwater Contour Maps to Groundwater Contour Maps for Previous Quarter</u>

The groundwater contour maps for the Mill site for the second quarter of 2007, as submitted with the Chloroform Monitoring Report for the second quarter of 2007, dated August 31, 2007, are attached under Tab E.

A comparison of the water table contour maps for the Quarter to the water table contour maps for the previous quarter indicates similar patterns of drawdown related to pumping of MW-4, MW-26 (TW4-15), TW4-19 and TW4-20. Water levels and water level contours for the site have not changed significantly since the last quarter, except for a few locations.

An increase in water level of approximately 9 feet occurred in MW-23 and an increase of approximately 5 feet occurred at TW4-21. The increase at MW-23 restores the measured water level, which was anomalously low in the second quarter, to a more typical value. Decreases in water levels of approximately 8 feet at well MW-31, and of approximately 5 feet at TW4-13 also occurred. The apparent decreases in water levels at these wells may be due to measurement error or measurement of water level shortly after a purging event. A water level increase of approximately 14 feet occurred at TW4-19, and an increase of approximately 13 feet occurred at TW4-20. Water level fluctuations in these pumping wells are due in part to fluctuations in pumping conditions just prior to and at the time the measurements are taken.

3.1.3. Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

3.1.4. Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

3.1.5. Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by pumping MW-4, TW4-19, MW-26 (formerly TW4-15), and TW4-20. The purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. These wells were chosen for pumping because 1) they are located in areas of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of the pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows a high rate of chloroform mass removal.

The impact of pumping these wells is indicated by the water level contour maps attached under Tabs D and E. Cones of depression have developed in the vicinity of the pumping wells which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate that effective capture of water containing high chloroform concentrations in the vicinity of the pumping wells is occurring. As noted in Section 3.1.2, little change in measured water levels occurred at pumping wells between the second and third quarters of 2007, except for the increases in water levels (decreases in drawdowns) at TW4-19 and TW4-20. Overall, the combined capture of TW4-19, TW4-20, MW-4 and MW-26 (TW4-15) has not changed significantly, but has decreased slightly, since the last quarter.

Although high chloroform concentrations exist at some locations downgradient of the pumping wells (for example, near TW4-4), the low permeability of the perched zone at these locations would prevent significant rates of chloroform mass removal should these wells be pumped. By pumping at the more productive, upgradient locations, however, the rate of downgradient chloroform migration will be diminished because of the reduction in hydraulic gradients, and natural attenuation will be more effective.

3.2. Interpretation of Analytical Results

3.2.1. Copy of Laboratory Results

Included under Tab H of this Report are copies of all laboratory analytical results for the groundwater quality samples collected under the chloroform contaminant investigation on June 27, 2007 along with the laboratory analytical results for a trip blank.

3.2.2. Electronic Data Files and Format

DUSA has provided to the Executive Secretary an electronic copy of all laboratory results for groundwater quality monitoring conducted under the chloroform contaminant investigation during the Quarter, in Comma Separated Values (CSV). A copy of the transmittal e-mail is included under Tab I.

3.2.3 <u>Current Chloroform Isoconcentration Map</u>

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

3.2.4 Data and Graphs Showing Chloroform Concentration Trends

Attached under Tab K is a table summarizing chloroform and nitrate values for each well over time. TW4-14 had a small amount of water just sufficient for sampling (see the discussion in Section 2.1.1 above)

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time. As TW4-14 was previously dry, a trend graph for that well has not been included.

3.2.5 Analysis of Analytical Results

Comparing the analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells, compared to last quarter: MW-4, TW4-1, TW4-6, TW4-10, TW4-15 (MW-26), TW4-16, and TW4-20.
- b) Chloroform concentrations have decreased by more than 20% in the following wells, compared to last quarter: TW4-2, TW4-5, TW4-8, TW4-9, TW4-21, and TW4-22;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: TW4-4, TW4-7, TW4-11, TW4-18, TW4-19, and TW4-24;
- d) Chloroform concentrations at TW4-8 decreased from 2.5 to 1.5 μg/L; and
- e) TW4-3, TW4-12, TW4-13, TW4-14, and MW-32 (TW4-17), TW4-23, and TW4-25 remained non-detect.

In addition, between the second and third quarters of 2007, the chloroform concentration in well TW4-20 increased from 1,800 μ g/L to 5,200 μ g/L, the concentration in TW4-21 decreased from 300 μ g/L to 140 μ g/L, and the concentration in TW4-22 decreased from 740 μ g/L to 530 μ g/L. New wells TW4-23 and TW4-25 remained non-detect for chloroform, and the concentration in new well TW4-23 decreased slightly from 2.6 to 2.2 μ g/L. TW4-24, located west of TW4-22, and TW4-25, located north of TW4-21, bound the chloroform plume to the west and north.

Chloroform concentrations in TW4-6, which was the most downgradient temporary perched well prior to installation of new temporary well TW4-23, increased slightly from 11 to18 μ g/L. This well has likely remained outside the chloroform plume due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation. Both TW4-6 and TW4-23 bound the chloroform plume to the south.

3.3. Quality Assurance Evaluation And Data Validation

Quality assurance evaluation and data validation procedures in effect at the time of sampling were followed. These involve three basic types of evaluations: field QC checks; Analytical Laboratory checks; and checks performed by DUSA personnel, as described below.

3.3.1 Field QC Checks

Field Quality Control samples for the chloroform investigation program consist of a field duplicate sample, a field blank and a trip blank. These check samples are to be generated for each quarterly sampling episode. During the 3rd Quarter of 2007 duplicates (TW4-65, duplicate of TW4-20 and TW4-70, duplicate of TW4-15), a DI blank (TW4-60), an equipment rinsate sample (TW4-63) and a trip blank were collected and analyzed. The results of these analyses are included with the routine analyses under Tab H.

3.3.2 Analytical Laboratory OA/OC Procedures

The Analytical Laboratory has provided summary reports of the analytical quality assurance/quality control (QA/QC) measurements necessary to maintain conformance with NELAC certification and reporting protocol. The Analytical Laboratory QA/QC Summary Report, including copies of the Mill's Chain of Custody and Analytical Request Record forms, for the November sampling event, are included under Tab H.

3.3.3 Mill QA Manager Review

The Mill QA Manager, which, for these sampling events was DUSA's Manager of Environmental Affairs, performed four types of reviews: a determination of whether Mill sampling personnel followed Mill sampling procedures; a review of the results from the Field QC Checks; a review of analytical reports for holding times and qualifying indicators for the data; and a review of the Analytical Laboratory QA/QC analysis. The results of the QA Manager's review are discussed below.

a) Adherence to Mill Sampling SOPs

On a review of adherence by Mill personnel to the sampling procedures summarized in Section 2.2 above, the QA Manager concluded that such procedures had been followed.

b) Results From Field QC Checks

The duplicate samples of TW4-16 and TW4-20 indicated a relative percent difference (RPD) outside the prescribed standard of 20% for chloroform analyses at both of these locations and for nitrate analyses at TW4-20. More specifically, duplicate chloroform analyses for TW4-15 and TW4-20 experienced RPD's of +104.3% and -135.4% respectively and the nitrate duplication at TW4-20 indicated an RPD of -62.3%. It is notable, however, that chloroform presence was not indicated in the field blank and rinsate samples.

In response to these conditions, the QA Manager has previously investigated possible causes of Quality Assurance anomalies in the chloroform sampling data. The areas of inquiry have included possible sources of chloroform from the DI distribution system and methods of sample duplication. As can been observed for this period, the DI blank and equipment rinsate sample results (TW4-60 and TW4-63) were non-detect suggesting that the installation of a carbon filtration unit in the DI water generation process was successful. In reviewing the results of chloroform duplicate data, the QA manager has discussed this matter with sampling personnel and it is believed that collecting sequential duplicate samples from pumping wells may be resulting in differences in chloroform between samples. Accordingly, the sampling staff has been instructed to collect duplicate samples only from non-pumping wells. In addition, the QA Manager will discuss further the issue of matrix interference in chloroform analyses with the contract laboratory.

c) Review of Analytical Laboratory QA/QC Analysis and Analytical Reports

The QA Manager reviewed the Analytical Laboratory's QA/QC Summary Reports and made the following conclusions;

(i) Check samples were analyzed for each method used in analyzing the Chloroform investigation samples. These methods were:

<u>Parameter</u>	Method
Nitrogen, (Nitrate + Nitrite as N)	E353.2
Chloroform,	E624
Carbon tetrachloride	E624
Chloromethane	E624
Methylene chloride	E624
Chloride	A4500-CL B

(ii) The check samples included at least the following: a method blank, a laboratory control spike (sample), a matrix spike and a matrix spike duplicate;

- (iii) All qualifiers, if any, and the corresponding explanations in the summary reports are reviewed by the QA Manager. The only qualifiers reported were for matrix interference in some of the analyzed monitoring location samples.
- (iv) The laboratory holding time for all analyses was within chloroform specification and sample temperature was acceptable upon receipt.

4. LONG TERM PUMP TEST AT MW-4, TW4-15 (MW-26), TW4-19 AND TW4-20, OPERATIONS REPORT

4.1. Introduction

As a part of the investigation of chloroform contamination at the Mill site, IUSA has been conducting a Long Term Pump Test on MW-4, TW4-19, TW4-15 (MW-26) and TW4-20. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation. The following information documents the operational activities during the Quarter.

4.2. Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from TW4-15 (MW-26) on August 8, 2003 and from TW4-20 on August 4, 2005. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase of the pump test and collect the initial two days of monitoring data for MW-4. DUSA personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 Final Report on the Long Term Pumping Test.

Data collected during the Quarter included the following:

- a) Measurement of water levels at MW-4, TW4-19, TW4-15 (MW-26), and TW4-20 on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis (See Section 3.1 and Tabs B and C for a discussion of the water levels);
- b) Measurement of pumping history:
 - (i) pumping rates
 - (ii) total pumped volume
 - (iii) operational and non-operational periods;

c) Periodic sampling of pumped water for chloroform and nitrate & nitrite analysis and other constituents, as discussed in detail in Section 3.2 above.

4.3. Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, TW4-15 (MW-26), and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, water levels in that well have been measured weekly. Depth to groundwater in all other chloroform contaminant investigation wells is monitored monthly. Copies of the weekly Depth to Water monitoring sheets for MW-4, TW4-15 (MW-26), TW4-19 and TW4-20 are included under Tab C. Monthly depth to water measurements for August are recorded in the Field Data Worksheets included under Tab B.

4.4. Pumping Rates and Volumes

4.4.1. MW-4

Approximately 100,070 gallons of water were pumped from MW-4 during the Quarter. The average pumping rate from MW-4, when the pump was pumping, was approximately 4.0 gpm throughout the Quarter. The well is not purging continuously, but is on a delay device. The well purges for a set amount of time and then shuts off to allow the well to recharge. Water from MW-4 was transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 3rd Quarter, 2007, and since commencement of pumping on April 14, 2003, an estimated total of approximately 1,407,180 gallons of water have been purged from MW-4.

4.4.2. TW4-19

Approximately 316,080 gallons of water were pumped from TW4-19 during the Quarter. The average pumping rate from TW4-19, when the pump was pumping, was approximately 3.1 gpm throughout the Quarter. The pump in this well is operating on a delay. It pumps for approximately one and a half minutes and then is off for two to three minutes. Water from TW4-19 was directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 1st Quarter, 2007, and since commencement of pumping on April 30, 2003, an estimated total of approximately 7,085,066 gallons of water have been purged from TW4-19.

4.4.3. TW4-15 (MW-26)

Approximately 72,080 gallons of water were pumped from TW4-15 (MW-26) during the Quarter. The average flow rate from TW4-15, when the pump was pumping, was approximately 5.5 gpm throughout the Quarter. The well is not purging continuously, but is on a delay device. The well now purges for a set amount of time and then shuts off to allow the well to recharge. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. At the end of the 1st

Quarter, 2006, and since commencement of pumping on August 8, 2003, an estimated total of approximately 1,002,590 gallons of water have been purged from TW4-15.

4.4.4. TW4-20

Approximately 70,360 gallons of water were pumped from TW4-20 during the Quarter. The average flow rate from TW4-20, when the pump was pumping, was approximately 6.0 gpm throughout the Quarter. The well is not purging continuously but is on a delay device. The well pump is set on a water elevation device. When the water reaches a set point, the pump turns on until the water level drops to another set point. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. Since commencement of pumping on August 4, 2005, an estimated total of approximately 712,650 gallons of water have been purged from TW4-20.

4.5 Daily Inspections

Denison has submitted an *Operations and Maintenance Plan, Chloroform Pumping System, White Mesa Mill, Blanding, Utah*, Revision 1.0 to UDEQ for approval. Upon approval of that plan, the Mill will commence documenting its daily inspections of the operational status of the chloroform pumping wells on the daily inspection form, an example of the form of which is attached as Tab M.

4.6 Operational Problems

Operational problems for the 3rd Quarter of 2007 was limited to a 3 week lack of power at TW4-19 where due to maintenance activities at the Mill power to this well was unavailable during the first 3 weeks of the quarter.

4.7 Conditions That May Affect Water Levels in Piezometers

No water was added to any of the three wildlife diversion ponds during the Quarter.

4.8 Chloroform Analysis

Monthly chloroform sampling ceased on November 8, 2003. From that time all chloroform contaminant investigation wells were sampled on a quarterly basis. The sample results are discussed above in Section 3.2.

5. CONCLUSIONS AND RECOMMENDATIONS

The water level contour map for the Quarter indicates that effective capture of water containing high chloroform concentrations in the vicinity of the pumping wells is occurring.

Between the second and third quarters of 2007, the chloroform concentration in temporary well TW4-20 increased from 1,800 μ g/L to 5,200 μ g/L, the concentration in TW4-21 decreased from 300 μ g/L to 140 μ g/L, and the concentration in TW4-22 decreased from 740 μ g/L to 530 μ g/L. Fluctuations in concentrations in these wells are likely related to variations in pumping in TW4-20 and nearby wells, and their location near the suspected former office leach field source area. Regardless of these measured fluctuations in chloroform concentrations, sampling of new temporary wells TW4-24 (located west of TW4-22) and TW4-25 (located north of TW4-21), indicated these wells remain outside the chloroform plume and thus bound the plume to the west and north. Chloroform was not detected at TW4-25 and was detected at a concentration of approximately 2 μ g/L at TW4-24.

Continued pumping of TW4-19, TW4-20, MW-4, and MW-26 is recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells (such as at TW4-20), helps to reduce downgradient chloroform migration by removing chloroform mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective.

The chloroform concentration at downgradient well TW4-6 increased slightly from 11 to $18 \mu g/L$. Although fluctuations in concentrations have occurred, this well has likely remained outside the chloroform plume due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation. Chloroform remained non detect at new downgradient temporary well TW4-23. Both TW4-6 and TW4-23 bound the chloroform plume to the south.

Date: 11.17.06 Revision: 1

Turbidity	Turbidity
Volume of Water Purged When Field Pe	,
Pumping Rate Calculation	į.
Flow Rate (Q), in gpm. 6	Time to evacuate two casing volumes (2V) T = 2V/Q =
Number of casing volumes evacuated (if	other than two)
If well evacuated to dryness, number of g	gallons evacuated
Name of Certified Analytical Laboratory	if Other Than Energy Labs

Type of Sample	Ta	nple ken rcle)	Sample Volume (indicate if other than as specified below)	r (circle) (ci		Preserva (circle)	Preservative Added (circle)		
VOCs	Y	N	3x40 ml	Y	N	~*	HCL	Ÿ	N
Nutrients	Y	N	100 ml	Y	N		H ₂ SO ₄	<u> </u>	N
Heavy Metals	Y	N	250 ml	Y	N ·		HNO ₃	Y	N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Prese	rvative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Ŷ	N		Y N If a prese Specify T Quantity	ype and	used,

Comments Applical on Site	at 1430	challes	DEVIN \$
RUANIFAINER DIESENT FO	R Durging	guent only	1. Weather
is a Scatter clouds		kt /	
pulge began at 1432	Rinter	is Ver	clear
With No Usable Partie	les parge &	nded at 1	442.
Left Site at 1494			

Date: 2.25.07 Revision: 2

Page 40 of 41

i

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	SHEET FOR GROUND WATER	
FIELD DATA WORKS Description of Sampling Event: 365	JUARTER CHOROFORM	
Location (well name) 7W4-7	Sampler Name and initials Charles Ocum & Ryaw	PAMER
Date and Time for Purging 8-14-07 a	nd Sampling (if different)	•
	well Pump (if other than Bennet) Calum Fes	
Sampling Event Chlero For M	Prev. Well Sampled in Sampling Event 7W4-7	
pH Buffer 7.0	pH Buffer 4.0 4.0	
Specific ConductanceuMHOS/cm	Well Depth	
Depth to Water Before Purging 72.70	Casing Volume (V) 4" Well: 3 (.653h) 3" Well: (.367h)	
Conductance (avg)	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	profession.
Weather Cond. Cloudy # Het Ext'l A	Amb. Temp.(prior to sampling event) 40	C
Time: <u>/532</u> Gal. Purged/2	Time: Gal. Purged	
Conductance 2505	Conductance	
pH	pH	
Temperature 15.95	Temperature	
Redox Potential (Eh) 210	Redox Potential (Eh)	
Turbidity 8.34	Turbidity	•
Time:Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	٠.

Mill - Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	45 63
Pumping Rate Calculation	
Flow Rate (Q), in gpm. 6	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{C}{\sqrt{Q}}$
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Tal	iple ken cle)	Sample Volume (indicate if other than as specified below)	er (circle) (cir		Preserva (circle)	Preservative Added (circle)		
YOC.	37								
VOCs	<u>Y</u>	N	3x40 ml	Y	N	~ *	HCL	Y N	
Nutrients	Y	N	100 ml	Y	N		H ₂ SO ₄	YN	
Heavy Metals	Y	N	250 ml	Y	N	2.0	HNO ₃	YN	
All Other Non- Radiologics	Y	N	250 ml	Y	N	- "	No Preser	vative Added	
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y N	
Other (specify)	Ÿ	N	Sample volume	Y	N	,	Y N If a preserving Specify Ty	vative is used,	

Comments Arrives on bearing falmer press Weather as cledy	SHE 27 1526	chaeles Beni	n.b
bean PAINTER DIES	ent for arraine	Event only	
Weather is dulde	But Hot O Delve	& Been let 15	3/1
lala ka a a a a ka a ka ili asa	as other that &	foul Suspended	Solida Stilet on on
MIGE ENDER AT 18	40	The state of	- DOR CHAIL CHOR
Auge Enden 4+ 18 left site at 15	47		
, , , , , , , , , , , , , , , , , , , 	/		

. 22

Redox Potential (Eh)_____

Date: 2.25.07 Revision: 2

Page 40 of 41

ļ

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER
FIELD DATA WORKS Description of Sampling Event: 3	WETTER CHORDEN
	Sampler Name and initials Huery Olsen, Cyan Palmer
	d Sampling (if different)
Well Purging Equip Used: _pump or _bailer	Well Pump (if other than Bennet) GRunol Fos
Sampling Event_Oblerofoem	Prev. Well Sampled in Sampling Event フルダーノ
pH Buffer 7.0 7,0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth ///O
Depth to Water Before Purging 48.94	Casing Volume (V) 4" Well: 23342(.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond Party Abudy & WARM Ext'l A	mb. Temp.(prior to sampling event) 25°C
Time: <u>0849</u> Gal. Purged <u>/8</u>	Time: Gal. Purged
Conductance 2069	Conductance
pH	рН
Temperature	Temperature
Redox Potential (Eh) 394	Redox Potential (Eh)
Turbidity	Turbidity
Fime:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
l'emperature	Temperature

Redox Potential (Eh)_

Mill - Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	the area Measured 66.6
Pumping Rate Calculation	
Flow Rate (Q), in gpm. 5/60 = = 5	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	er Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)	
		The war area			
VOCs	YN	3x40 ml	Y N	HCL Y N	
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N	
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N	
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added	
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N	
Other (specify)	YN	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative	
		`			

Comments Arrived	ST 6843	Avery Olsea	& Ruga	Palmere
Dresent Fre	larging Even	T out We	ther is par	ery Clouds
and where phi	gl Began a	J. 98146,	+	
Mater is Clery &	Met. 1/01 2	MILL MALIMEN	FLACES	
parge coasa	41 1/85 70	ing the as	080:1	

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA LIRANIUM MILL

-FIELD DATA WORKS	HEET FOR GROUND WATER
FIELD DATA WORKS Description of Sampling Event:	waster chlosoform
	Sampler Name and initials Charles OPUTUZ Ryan palma
Date and Time for Purging 8-14-07 ar	d Sampling (if different)
1)	Well Pump (if other than Bennet) Grand Fos
	Prev. Well Sampled in Sampling Event TW4-
pH Buffer 7.0 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth 114. 5
Depth to Water Before Purging 66.33	Casing Volume (V) 4" Well: 3/455 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond Scattered Clouds Ext'l A	amb. Temp.(prior to sampling event)
Time: 1451 Gal. Purged 1Z	Time: Gal. Purged
Conductance 262 2606	Conductance
рн 6.92	pH
Temperature 1573	Temperature
Redox Potential (Eh) 419	Redox Potential (Eh)
Turbidity 15.7	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature

Redox Potential (Eh)_

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameter	rs are Measured 63				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$				
Number of casing volumes evacuated (if other than two)					
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Ta	aple ken cle)	Sample Volume (indicate if other than as specified below)		ered cle)		Preservat (circle)	ive Add	<u>led</u>
•		·	The second of	<u> </u>				·	
VOCs	Y	N	3x40 ml	Y	N	3*	HCL	<u>Y</u>	N
Nutrients '	Y	N	100 ml	Y	N		H ₂ SO ₄	Y	N
Heavy Metals	Y	N	250 ml	Y	N	•	HNO ₃	Y	N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preserv	ative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y N If a preserv		used,
							Specify Ty Quantity of		/ative:

Comments Arriver a	N SIXE ST 1446 EXAT FOR PURGING	charles or	VIN B
PLEN PAIMER DIE	SENT FOR ALTERINA	front any. Wh	eather
Is Scattered de	wall to their Matt.	Darrie Bread of	1449
Worter is clear	Cut did shoul	Some Taken on	tides Settle
PURGE ENDEN ST	1459	0 1	
left SHE at 1	502	*	

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER
Description of Sampling Event:	
Location (well name) TW 4-5	Sampler Name and initials Avery Olsen & Ryan PAR
Date and Time for Purging 8-14-07 an	d Sampling (if different)
<i>/</i> .	Well Pump (if other than Bennet) Gound FoS
•	Prev. Well Sampled in Sampling Event 714-9
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific Conductance uMHOS/cm	
Depth to Water Before Purging 54.04	Casing Volume (V) 4" Well: 44.25 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Condition / Ext'l A	mb. Temp.(prior to sampling event) 34.
Time: 1256 Gal. Purged 18	Time: Gal. Purged
Conductance 2179	Conductance
рн. 6.95	pH
Temperature /6.44	Temperature
Redox Potential (Bh) 449	Redox Potential (Eh)
Turbidity 54.1	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance 2	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Page 41 of 41

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{14.7}{7}$
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuate <u>d</u>
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Y Y Y Y	N N N N	3x40 ml 100 ml 250 ml 250 ml	Y Y Y Y	N N N	3.5	HCL H ₂ SO ₄ HNO ₃ No Preserv	Y Y Yative A	N N N dded
Y Y Y Y	N N N	100 ml 250 ml 250 ml	Y Y Y	N N N		H ₂ SO ₄ HNO ₃	Y	N N
Y Y Y	N N	250 ml 250 ml	Y	N N	-	HNO ₃	Y	N
Y Y	N	250 ml	Ŷ	N				
Y		•				No Preserv	ative A	dded
	N	1.0001						
		I T'OOO TIEE	Y	N		H ₂ SO ₄	Y	N
Y	N	Sample volume	Y	N		Specify Ty	pe and	
							Specify Ty Quantity of	If a preservative is Specify Type and Quantity of Preser

Comments Arrive	o an Site	at 12.48	Aveor	Ober &
Zion palm	el person	- Kon Duras	nes Svert	any bear
Weather is pe	the Noude or	d Worling	durge les.	ar lat 1253
Water is alleg	11, will NO	VISABLE S	ediment(V
suge Ended	at 1307	Test S	ite at	309

.60

Date: 2.25.07 Revision: 2

Page 40 of 41

l

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER
FIELD DATA WORKS Description of Sampling Event:	Inappe phlorotopm
Location (well name) Tw4-6	Sampler Name and initials Avery Olsen & Ryan PAIMER
Date and Time for Purging 8-14-07 ar	•
Well Purging Equip Used: _vpump or _bailer	Well Pump (if other than Bennet) Grandfos
Sampling Event_ChluroFoem	Prev. Well Sampled in Sampling Event 124-18
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging 94.35	Casing Volume (V) 4" Well: 16.749 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Jarry Bland & WARM Ext'1 A	Amb. Temp.(prior to sampling event)
Time: 1158 Gal. Purged 12	Time: Gal. Purged
Conductance 3777	Conductance
рн_ 6.89	pH
Temperature 21.33	Temperature
Redox Potential (Eh) 444	Redox Potential (Eh)
Turbidity 43.4	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1-

Quality Assurance Plan (QAP)

Turbidity	Turbidity					
Volume of Water Purged When Eield Paramete	rs aro Measured 33.6					
Pumping Rate Calculation						
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{S \cdot b}$					
Number of casing volumes evacuated (if other the	nan two)					
If well evacuated to dryness, number of gallons evacuated						
Name of Certified Analytical Laboratory if Othe	er Than Energy Labs					

Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SC Other (specify) Y N Sample volume Y N If a p Speci	ervative Added le)
Nutrients Y N 100 ml Y N H ₂ SC Heavy Metals Y N 250 ml Y N HNO All Other Non-Radiologics Y N 250 ml Y N No P Gross Alpha Y N 1,000 ml Y N H ₂ SC Other (specify) Y N Sample volume Y N Y	YN
Heavy Metals	
All Other Non- Y N 250 ml Y N No P Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SC Other (specify) Y N Sample volume Y N Y If a p Specific approximation of the specific approximation of	4
Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SC Other (specify) Y N Sample volume If a p Speci	×
Other (specify) Y N Sample volume Y N If a p Speci	reservative Added
If a p	4 Y N
	N reservative is used, fy Type and tity of Preservative

Л		1153		
Comments Arriv	ED ON SitE	at the	. Avery also	<u>~</u>
& Kyan Del	MER MOSENT	FOR augus	in Svent only	·
Weather les	antho cloud	to alking	parge began at	156
Water is.	Junda l	t has Some of	Solinellt	
Durge Ende	d at 1900	ROI Telt Di	ite at 1205	
		- 0		

Date: 2.25.07 Revision: 2

Page 40 of 41

Į

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER	
FIELD DATA WORKS Description of Sampling Event:		
Location (well name) TW4-7	Sampler Name and initials Charles Sevin B byon	DAMER
Date and Time for Purging 8-14-07 ar	nd Sampling (if different)	
. /	r Well Pump (if other than Bennet) <u>Chud To</u> S	
Sampling Event_ChocoFopm	Prev. Well Sampled in Sampling Event 7w4-4	
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0	
Specific ConductanceuMHOS/cm	Well Depth 12/	
	Casing Volume (V) 4" Well: 2.55 (.653h) 3" Well: (.367h)	
Conductance (avg)		
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	1000
Weather Cond. Seallered day Ext'l A	Amb. Temp.(prior to sampling event)	(
Time: 15/4 Gai. Purged 12	Time: Gal. Purged	
Conductance 2999	Conductance	
pH 7.51	рН	
Temperature /5.53	Temperature	
Redox Potential (Eh) 205	Redox Potential (Eh)	
Turbidity	Turbidity	
Time:Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	

Date: 11.17.06 Revision: 1

Page 41 of 41

Turbidity	Turbidity				
Volume of Water Purged When Field Parameter	rs are Measured 65.4				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = 10.9$				
Number of casing volumes evacuated (if other the	nan two)				
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Tal	aple ken cle)	Sample Volume (indicate if other than as specified below)	Filt (cir	ered cle)	Preservative Added (circle)
			The American	<u> </u>		
VOCs	Y	N	3x40 ml	Y	N	- HCL Y N
Nutrients	Y	N	100 ml	Y	N	H ₂ SO ₄ Y N
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃ Y N
Ali Other Non- Radiologics	Y	N	250 ml	Y	N	No Preservative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N
Other (specify)	Y	N	Sample volume	Y	N	Y N If a preservative is used Specify Type and Quantity of Preservative

Comments Applied and Site at 1363 Chaples	ES DEWIN &
Syon Palmer Mesent For purging Front	only Weather
loser is Very clear and Very Little Dediment Su	ppended
left site at 1525	

.GF

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

	SHEET FOR GROUND WATER
	Sampler Name and initials Aven Oken, Ren
Date and Time for Purging 8-14-07 a	
	well Pump (if other than Bennet) 6/m d Fo
Sampling Event ChloroForem	Prev. Well Sampled in Sampling Event 764-3
pH Buffer 7.0 7.0	pH Buffer 4.0 4, 6
Specific ConductanceuMHOS/cm	Well Depth 126
Depth to Water Before Purging 70.81	Casing Volume (V) 4" Well: 36.639 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg) (.30/h)
Well Water Temp. (avg)	Redox Potential (Éh)Turbidity
Weather Cond. Party Clind Magn. Ext'l	Amb. Temp.(prior to sampling event) 25°C.
Time: <u>()9// Gal. Purged</u>	Time: Gal. Purged_
Conductance 3297	Conductance
рн 7.5.3	pH
Temperature 15.60	Temperature
Redox Potential (Eh) 168	Redox Potential (Eh)
Turbidity 23. 9	Turbidity
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
рН	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity		Turbidity
		noters are Measured 72
Pumping Rate Calculation		
Flow Rate (Q), in gpm. S/60 = =	6	Time to evacuate two casing volumes (2V) $T = 2V/Q = 1/2$
Number of casing volum	es evacuated (if oth	er than two)
If well evacuated to dryn	ess, number of gallo	ons evacuated
Name of Certified Analy	tical Laboratory if (Other Than Energy Labs

Type of Sample	Tal	<u>aple</u> ken cle)	Sample Volume (indicate if other than as specified below)		ered cle)		Preserv (circle)	ative Add	led
VOCs	Y	N	3x40 ml	Y	N	~^	HCL	Y	N
Nutrients	Y	N	100 ml	Y	N		H ₂ SO ₄	Y	N
Heavy Metals	Y	N	250 ml	Y	N		HNO ₃	Y	N
All Other Non- Radiologics	Y	N	250 ml	Y	N	4	No Prese	rvative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N	3	H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y N If a prese Specify 1 Quantity	Type and	

Comments Averyed at 0902 Min	en Olsan & Roan la fuer
present for purging Event and	y heather is faith Clerdy &
Very little Salinkar. Querge Ended	at 1918 Feft Site at 1921

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT I WHITE MESA URANIUM MILI

- ,	Camalan	
Location (well name) TM/U-9	State of the state	
// 10-67-	Name and initials Avery Olsen & Ryan falmer	2
Date and Time for Purging 7 and	d Sampling (if different)	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Gend Fes	
Sampling Event <u>Chlurs Foem</u>	Prev. Well Sampled in Sampling Event 7104-L	
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0	
Specific Conductance uMHOS/cm	Well Depth	
Depth to Water Before Purging 5226	Casing Volume (V) 4" Well: 45./63 (.653h) 3" Well: (.367h)	
Conductance (avg)	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	
Weather Cond. Party Clandy Ext'l Ar	mb. Temp.(prior to sampling event) 3 4.	
Time: 12/5 Gal. Purged 12	Time: Gal, Purged	
	Conductance	
рн 6.93	pH	
Temperature 16.27	Temperature	
Redox Potential (Eh) 439	Redox Potential (Eh)	,
Turbidity	Turbidity	
Time:Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
рН	pH	
Temperature	Temperature	

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs an e Measure d
Pumping Rate Calculation	en er
Flow Rate (Q), in gpm. S/60 = = 6	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{15}{2}$
Number of casing volumes evacuated (if other the	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	er Than Energy Labs

Type of Sample	Sample Sample Volume Taken (indicate if other than as specified below)		Preservative Added (circle)		
		1999 Aug. 1999			
VOCs	Y N	3x40 ml	Y N	HCL Y N	
Nutrients	Y N	100 ml	Y N	H ₂ SO ₄ Y N	
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N	
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added	
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N	
Other (specify)	YN	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:	

Comments Arriv	eo an site	at 1209	Aven 1	Elsen ±
Vicen reprise	a rosent la		such a.T.	
Weather is	party Milly Con	ald Warn	n. Durgell	egan a + 1213
water is Sly	of by Milky am	d bod previde	Brilling 6	
purge Ende	deat 1028	711	Site of	1730
7 0			<u> </u>	

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKSHEET FOR GROUND WATER Description of Sampling Event: Supplied to the Control of Sampling Event					
Location (well name) TWY-10	Name and initials Charles Olypus Ryon PAIMER				
Date and Time for Purging 8-14-07 an	d Sampling (if different)				
Well Purging Equip Used: Lpump or _bailer	Well Pump (if other than Bennet) Glund Fes				
Sampling Event Choro Foen	Prev. Well Sampled in Sampling Event 744-2/				
pH Buffer 7.0 7.0	pH Buffer 4.0				
Specific Conductance uMHOS/cm	Well Depth				
Depth to Water Before Purging 55.50	Casing Volume (V) 4" Well: 37548 (.653h) 3" Well:(.367h)				
Conductance (avg)	pH of Water (avg)				
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity				
Weather Cond. Cloudy & Maem Ext'l A	amb. Temp.(prior to sampling event) 40				
Time: 1382 Gal. Purged 12	Time: Gal. Purged_				
Conductance 26ZZ	Conductance				
рн. 6.94	pH				
Temperature 17.61	Temperature				
Redox Potential (Eh) 428	Redox Potential (Eh)				
Turbidity 24.6	Turbidity				
Time: Gal. Purged	Time: Gal. Purged				
Conductance	Conductance				
pH	pH				
Temperature	Temperature				

Redox Potential (Eh)_

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	rs are Measured 78
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{12}{5}$
Number of casing volumes evacuated (if other t	han two)
f well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

Type of Sample	Sample Taken (circle)		Sample Volume (indicate if other than as specified below)	Filtered (circle)			Preservative Added (circle)		
VOCs	Y	***	0.401	Y	2.7		TTOY		
		N	3x40 ml	 -	N	~ ^ ^	HCL	Y	N
Nutrients	<u> Y</u>	N	100 ml	Y	N		H ₂ SO ₄	Y	N
Heavy Metals	Y	N	250 ml	Y	N ·		HNO ₃	Y	N
All Other Non- Radiologics	Y	N	250 ml .	Y	N		No Preserv	ative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y N If a preserv Specify Ty Quantity of	pe and	used,
								\ \ \}	

Comments	All	likes	at	1248	Char	eles o	OCUTAL &	Run	PAMOR
Wenth	eris	Clera	to B	J He	at.			- your	10000
Purc.E	Began	at	0135	0 ,					
Wolfer	12 21	BLATH	Willy	and ina	s Some	FINE	Scalimen	NT VISA	refer to
Purge	Endes	Parl	1402						
last Sa	to at	147) 4				,		

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER
Location (well name) 7/04-11	Name and initials draltes oxum & Ryan palmed
Date and Time for Purging 4-18-07 an	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) <u>GRUNDFos</u>
Sampling Event ChloloFolem	Prev. Well Sampled in Sampling Event TW4-2
pH Buffer 7.0 7.0	pH Buffer 4.0 <u>4.0</u>
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging 65.60	Casing Volume (V) 4" Well: 22.465 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Cloudy & WARM Ext'l A	mb. Temp.(prior to sampling event)
Time: 1548 Gal. Purged 12	Time: Gal. Purged
Conductance 4260	Conductance
pH737	рН
Temperature 15.3	Temperature
Redox Potential (Eh) 325	Redox Potential (Eh)
Turbidity 22.7	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 41 of 41

ameters are Measured 45
Time to evacuate two casing volumes (2V) $T = 2V/Q = \underbrace{- \underbrace{2 \cdot 2}}_{\text{constant}}$
other than two)
allons evacuated
f Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)		
-	**	· · · · · · · · · · · · · · · · · · ·				
VOCs	Y N	3x40 ml	Y N ,-	HCL Y N		
Nutrients	YN	100 ml	Y N	H ₂ SO ₄ Y N		
Heavy Metals	Y N	250 ml	YN	HNO ₃ Y N		
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added		
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N		
Other (specify)	YN	Sample volume	Ϋ́N	Y N If a preservative is used, Specify Type and		
				Quantity of Preservative:		

. 1	Comments	Age	eival	ON	Site a	+ 1544	/	Chael	er us du	W	
b.	Wiani Dulenc	Halm	and l	PRESE	NT ay	purgin	4 Event	- Weath	or us elev	y s	weem
1	Walter	is	Very	cleo	No	Ursasi	e paer	tdes a	fines		
1	renge	Site	at.	15.5	<u>5</u> 5				0		
•	~ <i>U</i> -										

.87

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event: 3 da Qua	RETER ChleroFORM
	Sampler Name and initials Annay Olstv, Lyan Palmere
	nd Sampling (if different)
Well Purging Equip Used:pump orbailer	well Pump (if other than Bennet) <u>[fund Fo</u> 5
Sampling Event <u>ChloroFoem</u>	Prev. Well Sampled in Sampling Event 724-23
pH Buffer 7.0 7.0	pH Buffer 4.0 4. 0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging 37-74	Casing Volume (V) 4" Well: <u>41.635</u> (.653h)
Conductance (avg)	3" Well:(.367h) pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Claudy & Cool Ext'l A	amb. Temp.(prior to sampling event) 2/
Time 0749 Gal. Purged 24	Time: Gal. Purged
Conductance 657.7	Conductance
pH7.61	pH
Temperature/5.54	Temperature
Redox Potential (Eh) 211	Redox Potential (Eh)
Turbidity 20.7	Turbidity
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Paramete	18 at c Mussure d 83.4				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =6	Time to evacuate two casing volumes (2V) $T = 2V/Q = 13.9$				
Number of casing volumes evacuated (if other than two)					
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample		of Sample Taken (circle)			Filtered (circle)			Preservative Added (circle)		
		77		The man section of					•:	
VOCs		Y	N	3x40 ml	Y	N	~ *	HCL	Y	N
Nutrients		Y	N	100 ml	Y	N		H ₂ SO ₄	Y	N
Heavy Metals		Y	N	250 ml	Y	N	2.4	HNO ₃	Y	N
All Other N Radiologics	on-	Y	N	250 ml	Y	N		No Preser	vative A	dded
Gross Alpha		Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	-	Y	N	Sample volume	Y	N		Y N If a preser Specify Ty Quantity of	ype and	
										

Comments Addiver at purging En	0740 4	New Olsen	# Ryan P	Almer
present at purging En	ent only.	Weather is	douch me	1 Cool.
page begin at 071 Water is clear to	15			
Water is Clear To	Sight, Vea	, 1: He Sedi	ment, No	0007.
UNIGE CHARACTURE	9.		•.`	
Left Site at			•	
0				

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL TA WODE SUPET FOR GROUND WATER

Description of Sampling Event: 3 900	erec. Samply Event
<i>//</i> /	~ 1. I J
Location (well name) TW 4-13	Name and initials Avery Olsto, Ryan Palmer
Date and Time for Purging 4-14-67 and	d Sampling (if different)
Well Purging Equip Used: ✓pump or _bailer	Well Pump (if other than Bennet) Grund Fas
Sampling Event_ChloraFoRm_	Prev. Well Sampled in Sampling Event <u>TW4-12</u>
pH Buffer 7.0 7.	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth_1/15.5
Depth to Water Before Purging 54.70	Casing Volume (V) 4" Well: 33./72 (.653h) 3" Well: (.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Sury & larry dow Ext'l A	mb. Temp.(prior to sampling event) 35.
Time: 08/6 Gal. Purged 36	Time: Gal. Purged
Conductance /56/	Conductarice
pH 7.37	pH
Temperature 15.84	Temperature
Redox Potential (Eh) 332	Redox Potential (Eh)
Turbidity 8.15	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Turbidity	Turbidity						
Volume of Water Purged When Field Parameters are Measured 66.6							
Pumping Rate Calculation							
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{1}{2}$						
Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytical Laboratory if Other Than Energy Labs							

Type of Sample	Tal	nple ken cle)	Sample Volume (indicate if other than as specified below)		ered cle)		Preservat (circle)	tive Added
VOCs	Y	7.7	2 40 1	ļ.,	3.7		****	· · · · · · · · · · · · · · · · · · ·
		N	3x40 ml	Y	N	>*	HCL	YN
Nutrients	Y	N	100 ml	Y	N		H ₂ SO ₄	Y N
Heavy Metals	<u>Y</u>	N	250 ml	Y	N ·		HNO ₃	YN
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preser	vative Added
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y N
Other (specify)	Y	N	Sample volume	Y	N		Y N	
							Specify Ty	vative is used, pe and f Preservative:
			•					

Comments flerives at 0806. Avery Olsen to Ryan palmer present at a purging Event only. Weather lenditions are partly cloudy Slavery, and waren parge began at 0810 purge began at 0810 suidence of Sediment Visually purge Ended at 0821 Left Site at 0824
Dresent at A purging Event only. Weather landitions
are party dudy, Show, and walk
parge began at 0810
Whiter it clear and no suidence of Sediment Visual A
more Ended at 0821 Left Site at 0824

Date: 2.25.07 Revision: 2

Page 40 of 41

1

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL ATA WORKSHEET FOR GROUND WATER

	ABILI I OR GROOND WALDRY
Description of Sampling Event:	MARTE Supplies Chlarotrem
	Sampler Name and initials Avery Olsen, Lyon Palmer
Date and Time for Purging 8-14-07 an	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Glund Fos
•	Prev. Well Sampled in Sampling Event 7w4-13
pH Buffer 7.0 7.	
Specific ConductanceuMHOS/cm	Well Depth 7
Depth to Water Before Purging 92.63	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
рН	pH
Temperature	Temperature
Pedov Potential (Rh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

	2 480 11 01 12
Turbidity	Turbidity
Volume of Water Purged When Field Paramet	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other	than two)
f well evacuated to dryness, number of gallons	s evacuated
Name of Certified Analytical Laboratory if Oth	ner Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	YN	3x40 ml	Y N	HCL Y N
Nutrients	YN	100 ml	YN	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	Y N
				If a preservative is used, Specify Type and Quantity of Preservative:

Comments _	onived st	0828.	and Aver	1 Olsens &	Rusa Paks	ŒĹ
PlesonT	for Dange	svent.	depth NA	a papped	and was	
to 1600	to goted	1 igitime	it parge	I Move	1 on	
					.,	
			· · · · · · · · · · · · · · · · · · ·		•	_

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ŧ

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

HEET FOR GROUND WATER
ARR CHOOFORM
Sampler Name and initials Aren Olsen & Rom PAlmer
d Sampling (if different)
Well Pump (if other than Bennet) Glund Fos
Prev. Well Sampled in Sampling Event 724-8
pH Buffer 4.0
Well Depth 142
Casing Volume (V) 4" Well: 49.95 (.653h) 3" Well:(.367h)
pH of Water (avg)
Redox Potential (Eh)Turbidity
mb. Temp.(prior to sampling event) 27.
Time: Gal. Purged
Conductance
pH
Temperature
Redox Potential (Eh)
Turbidity
Time: Gal. Purged
Conductance
pH
Temperature

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Picith Paramet	ers are Measured 96
Pumping Rate Calculation	
Flow Rate (Q), in gpm.	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{1}{\sqrt{2}}$
Number of casing volumes evacuated (if other	than two)
f well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Oth	er Than Energy Labs

Type of Sample	Ta	npie ken cle)	Sample Volume (indicate if other than as specified below)		tered cle)		Preservative Added (circle)
VOCs	Y	N	3x40 ml	Y	RT		7707
Nutrients	Ÿ				<u>N</u>	→ +	HCL Y N
		N	100 ml	Y	N		H ₂ SO ₄ Y N
Heavy Metals	<u>Y</u>	N	250 ml	Y	N ·		HNO_3 Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preservative Added
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄ Y N
Other (specify)	Y	N	Sample volume	Y	N		Y N
							If a preservative is used Specify Type and Quantity of Preservative

Comments Arri	urd on Sit	0923	Away Ms	ex & Ru	an Palmer
present For	Aurging &	FURNT ON	- Weather	15 pacon	clande
WIAPM. DINK	1 Dechu	at. 0924	Water 1	is Clear	with a little
Sediment 1	Dresent. NO	ODM	ounce Ende	Cat. 194	12
Left Site	at 0944				
				•	4.0

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

1

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	ACCITOR GROUND WATER
	A .
Location (well name) TW 4-18	Name and initials Auray Olsen, Wan Palmee
	d Sampling (if different)
Well Purging Equip Used:	Well Pump (if other than Bennet) [Mud Fos
Sampling Event <u>chloro Faem</u>	Prev. Well Sampled in Sampling Event_764-24
pH Buffer 7.0 Z.O	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth_/37.5
Depth to Water Before Purging 54.52	Casing Volume (V) 4" Well: 54/86 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond faterly Cloudy & WARM Ext'l A Time: 1018 Gal. Purged 18	Time: Gal. Purged
Conductance 1759	Conductance
{рн} 7.30	pH
Temperature 16.70	Temperature
Redox Potential (Eh) 327	Redox Potential (Eh)
Turbidity 6.39	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity
ers are Measured 108
Time to evacuate two casing volumes (2V) $T = 2V/Q = \int \int \int dx$
than two)
s evacuated
ner Than Energy Labs

Type of Sample	Ta	n <u>ple</u> ken cle)	Sample Volume (indicate if other than as specified below)		ered cle)		(circle)	tive Added
			Production of	<u> </u>			<u> </u>	
VOCs	<u>Y</u>	N	3x40 ml	Y	N	~ ^	HCL	Y N
Nutrients	Y	N	100 ml	Y	N		H ₂ SO ₄	YN
Heavy Metals	Y	N	250 ml	Y	N	,	HNO ₃	Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preser	vative Added
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	YN
Other (specify)	Y	N	Sample volume	Y	N		Y N If a preser Specify Ty	vative is used, /pe and of Preservative:

Comments Arrive	D M SHE.	at 1011	Avea, Men &	Rian PAIMER
alesent Fire	Paraing Even	only Wayter	is Rathy douch	& WHEM
Duraing Began	a BILINIS.	Water in	den will	Little
Irdinent	that fell to	lotter ourge En	led at 10.33	
Left Dite	at 1036			
0			•	

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

1

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKSP Description of Sampling Event:	IEET FOR GROUND WATER
Location (well name) TW4-21	Sampler Name and initials Avery USEN & Ryan PAIMER
Date and Time for Purging 48-14-07 and	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Grund Fox
Sampling Event Chloso Form	Prev. Well Sampled in Sampling Event_7\u03c44-5
pH Buffer 7.0 7.0	pH Buffer 4.0 . 4. 0
Specific Conductance uMHOS/cm	Well Depth 125
Depth to Water Before Purging 55.94	Casing Volume (V) 4" Well: <u>45.094</u> (.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Conditating Cloudy Ext'l A WHOM / HoT	mb. Temp.(prior to sampling event) 40
Time: 1322 Gal. Purged 18	Time: Gal. Purged
Conductance 3/6/	Conductance
pH 7.62	pH
Temperature <u> </u>	Temperature
Redox Potential (Eh) 457	Redox Potential (Eh)
Turbidity 1.55	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameters are Measured 91					
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =6	Time to evacuate two casing volumes (2V) $T = 2V/Q = 1$				
Number of casing volumes evacuated (if other than two)					
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Ta			. —	tered cle)	Preservative Added (circle)
YOC-	Y	3.7	0.40	ļ	3.7	
VOCs		N	3x40 ml	Y		- HCL Y N
Nutrients	Y	N	100 ml	Y	N	H_2SO_4 Y N
Heavy Metals	Y	N	250 ml	Y	N	HNO ₃ Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preservative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N
Other (specify)	Y	N	Sample volume	Y	N	YN
						If a preservative is used, Specify Type and Quantity of Preservative:

Comments Ariver	at 1315	Avery Oken by Washer is to	\$ RVAN	PAlmee.
OCISENT FOR	purging Event ca	hy weather is to	RETH Clus	1 \$ wen
MIGHE Began	27 1319) Ils <i>Able Sedime</i> n		
Works IS VEN	M Clear NO	113Able Sedimen	<u>r</u>	
PHYLL SIDEN AT	1334			
If SITE AT	13.37		•	

Date: 2.25.07 Revision: 2

Page 40 of 41

PARMER

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event:	
Location (well name) TM4- 22	Sampler Name and initials Avery Olsen & Ryn
Date and Time for Purging 8-14-07 an	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Go and Fos
Sampling Event_chleroForem	Prev. Well Sampled in Sampling Event 744-10
pH Buffer 7.0 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging 57 18	Casing Volume (V) 4" Well: 37.756 (.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Clandy & Hot Ext'l A	mb. Temp.(prior to sampling event) 42
Time: 4/4 Gal. Purged /2	Time: Gal. Purged
Conductance 4593	Conductance
_{pH} 7.22	pH
Temperature 18.92	Temperature
Redox Potential (Eh) 347	Redox Potential (Eh)
Turbidity 4.9	Turbidity
Time:Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Turbidity	Turbidity
Volume of Water Purged When Field Parame	eters are Measured 75.6
Pumping Rate Calculation	
Flow Rate (Q), in gpm.	Time to evacuate two casing volumes (2V) $T = 2V/Q = 12.$
Number of casing volumes evacuated (if othe	er than two)
If well evacuated to dryness, number of gallo	ns evacuated
Name of Certified Analytical Laboratory if O	ther Than Energy Labs

Type of Sample Taken (circle)		Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
· ·	37 37	2 40 1	T	
VOCs	YN	3x40 ml	Y N ,.	HCL Y N
Nutrients	YN	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrivers on Man, PALMER , & Churcher 15, Churcher	Site at 14	409 Avery Obser \$	
Man VAMER 1	resent Fire	Darying Syell only	
Weather is chin	eh & Hat	Durbe began at 1417	
Water is Ver o	on with NO	VISABLE SECTIONENT	
Donne Ended &	£ 1424	Zeft Dete at 1477	

Date: 2,25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	HEEL FUR GROUND WALER
	Sampler
Location (well name) TW 4-23	Name and initials Avery Olsew, charles own, Pyon Palme
Date and Time for Purging 8-14-08 at	nd Sampling (if different)
Well Purging Equip Used:pump orbaile	r Well Pump (if other than Bennet) Grand Tos
Sampling Event ChlereForm	Prev. Well Sampled in Sampling Event TW4-25
pH Buffer 7.0 <u>7.0</u>	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth
Depth to Water Before Purging 68.60	Casing Volume (V) 4" Well: 35.7/9 (.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond Cloudy & Cool Ext'l A	Amb. Temp.(prior to sampling event) 21 C
Time: 6722 Gal. Purged 30	Time: Gal. Purged
Conductance 3563	Conductance
pH 7.13	pH
Temperature 15.73	Temperature
Redox Potential (Eh) 150	Redox Potential (Eh)
Turbidity 35.0	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Padov Potential (Fh)	Redox Potential (Fh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field	Enganoters are Measured 71. 4
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = 1/1.$
Number of casing volumes evacuated	(if other than two)
If well evacuated to dryness, number o	of gallons evacuated
Name of Certified Analytical Laborato	ory if Other Than Energy Labs

Ta	ken	than as specified below)	-		Preservative Added (circle)
37	37		-	37	
					HCL Y N
	N	100 ml	Y	N	H ₂ SO ₄ Y N
Y	N	250 ml	Y	N	HNO ₃ Y N
Y	N	250 ml	Y	N	No Preservative Added
Y	N	1,000 ml	Y	N	H ₂ SO ₄ Y N
Y	N	Sample volume	Y	N	Y N If a preservative is used,
					Specify Type and Quantity of Preservative:
	Y Y Y Y Y	Y N Y N Y N	Taken (circle) (indicate if other than as specified below) Y N 3x40 ml Y N 100 ml Y N 250 ml Y N 1,000 ml	Taken (circle) (indicate if other than as specified below) (circle) Y N 3x40 ml Y Y N 100 ml Y Y N 250 ml Y Y N 1,000 ml Y	Taken (circle) (indicate if other than as specified below) (circle) Y N 3x40 ml Y N Y N 100 ml Y N Y N 250 ml Y N Y N 250 ml Y N Y N 1,000 ml Y N

Comments _/	Jeenso	aT 09	13. A	you also	s chaele	s Arvial	. Quan
DAIMER	Mesent	For 4	Duración	FUENT	- only.	Wather	is
DADTH	Tlough is	l'ov!	DuNE	"BIGAN	ar 19717	MATSO) /Ł
Shahith	Clark	with. I	year Fri	well Sent	an ent	DINGE	Endod
ST ME	50724	_Lef+	Siz	T AT O	737		
						•	

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DATA WORKS	indi pur gruuivi water
Description of Sampling Event:	
	Sampler
Location (well name) TW 4-24	Sampler Name and initials Avery Usen & Lyan PAINTER
Date and Time for Purging 8-14-67 and	d Sampling (if different)
•	
Well Purging Equip Used: Voump or bailer	Well Pump (if other than Bennet) Grand Fos
, ,	
Sampling Event ChicroFoem	Prev. Well Sampled in Sampling Event TWY-16
pH Buffer 7.0	pH Buffer 4.0
Specific Conductance uMHOS/cm	Well Depth 122
· •	·
Depth to Water Before Purging 57.45	Casing Volume (V) 4" Well: 42, 151 (.653h)
•	3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
1 11 langer	~~
Weather Cond. FACTE Honor Ext'l A	mb. Temp.(prior to sampling event) 27
Time: 6954 Gal. Purged /8	Time: Gal. Purged
Conductance 8585	Conductance
Conductance 0303	Conductance
pH 7,14	pH
pH 7,11	pn
Temperature 16.23	Temperature
Temperature 10, C	1 Chilpetature
Redox Potential (Eh) 302	Redox Potential (Eh)
Redox I occurrat (Lin)	REGULT OCCUPANT (AND)
Turbidity 15.6	Turbidity
Turbidity	1 0101015
Time: Gal. Purged_	Time: Gal. Purged
Inno	
Conductance	Conductance
pH	pH
Temperature	Temperature
	•
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity Turbidity							
Volume of Water Purged When Field Parameters are Measured 84							
Pumping Rate Calculation							
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) $T = 2V/Q = 44.0$							
Number of casing volum	ies evaci	ated (if other than two)		,		
If well evacuated to dryn	ess, nun	nber of	gallons evacuated				
Name of Certified Analy	tical Lal	orator	y if Other Than Ener	gy La	ıbs		
		-					
Type of Sample	Sam Tak (cire	en	Sample Volume (indicate if other than as specified below)	<u>Filt</u> (cir	ered cle)	Preservativ (circle)	e Added
			The same of the sa			1	
VOCs	Y	N	3x40 ml	Y	N ~-		Y N
Nutrients	<u>Y</u>	N	100 ml	Y	N	H ₂ SO ₄	Y N
Heavy Metals	Y	N	250 mi	Y	N -	HNO₃	
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preserva	tive Added
Gross Alpha	Y	N	1,000 mI	Y	N	H ₂ SO ₄	Y N
Other (specify)	Y	N	Sample volume	Y	N	Y N	
						If a preserva Specify Type Quantity of I	e and

Comments .	Arrived	ON Site	at 694	Westen	on olsen	& Real	N Dofreek
MESENT	FOR PI	eging EV	ent only.	Wentless .	is party	Churchy	aid
VIMM.	ONLY	My Bear	an at 10	751	Water is	Cloudy	wit
A Frew la	igh politi	des and s	Ediment.	Durge	ENDERA	A. (11)	05
Left 1	like at	1008					
		, , , , , , , , , , , , , , , , , , , ,			•		

250

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Floid Paramete	ma Measured 130 g:
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = 2J \cdot 7$
Number of casing volumes evacuated (if other the	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Energy Labs

VOCs Y N 3x40 ml Y N HCL Y N Nutrients Y N 100 ml Y N H ₂ SO ₄ Y N Heavy Metals Y N 250 ml Y N HNO ₃ Y N All Other Non- Y N 250 ml Y N No Preservative Added Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N Y N If a preservative is used, Specify Type and Quantity of Preservative:	Type of Sample	Ta	n <u>ple</u> ken cle)	Sample Volume (indicate if other than as specified below)		ered cle)		Preserva (circle)	tive Add	led
Nutrients Y N 100 ml Y N H ₂ SO ₄ Y N Heavy Metals Y N 250 ml Y N HNO ₃ Y N All Other Non- Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N Y N If a preservative is used, Specify Type and	· ·	- 17			47	37		TTCY		A.
Heavy Metals Y N 250 ml Y N HNO3 Y N All Other Non- Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N Y N If a preservative is used, Specify Type and							<u> </u>			
All Other Non- Y N 250 ml Y N No Preservative Added Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N Y N If a preservative is used, Specify Type and										
Radiologics Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N If a preservative is used, Specify Type and			N	250 ml	Y	N	•	HNO ₃	Y	N
Gross Alpha Y N 1,000 ml Y N H ₂ SO ₄ Y N Other (specify) Y N Sample volume Y N If a preservative is used, Specify Type and	All Other Non-	Y	N	250 ml	Y	N		No Preser	vative A	dded
Other (specify) Y N Sample volume Y N If a preservative is used, Specify Type and	Radiologics								•	
If a preservative is used, Specify Type and	Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Specify Type and	Other (specify)	Y	N	Sample volume	Y	N	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	YN		
							:	Specify T	ype and	·

Comment	s Arri	VEN a	N Si	t 0630	1. Avery	Olsen	charles	Orvin.
3 14	100	DA luis	e or	WILNT	Dwain	ne Eura	Tanky	
Liceto	eris	alun	de to	Mool.	Duras	Beau	an and	0636
Water	150	eal &	o Slal	T WH	h Not	Settle Wes	IT presen	σ.
Pucar	Sud	ed at	0657	Left	1 Dite	at 07	63	
7/				00				

Date: 2.25.07 Revision: 2

Page 40 of 41

ŧ

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER	
	Compler	_
Location (well name) TW 4-25	Name and initials Aury Olsew, charles own, n	lyon
Date and Time for Purging 8-14-07 an	d Sampling (if different)	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Glund Fos	
Sampling Event chloroforus	Prev. Well Sampled in Sampling Event_N/A.	
pH Buffer 7.0 7. 0	pH Buffer 4.0 4. O	
Specific Conductance uMHOS/cm	Well Depth 143.15	
Depth to Water Before Purging 43.34	Casing Volume (V) 4" Well: 65. 175(.653h) 3" Well: (.367h)	
Conductance (avg)	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity	
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 21.C	(
Time: <u>66.38</u> Gal. Purged 12	Time: Gal. Purged	
Conductance 3332	Conductance	
рн 6.44	pH	
Temperature 15.52	Temperature	
Redox Potential (Eh) 564	Redox Potential (Eh)	.•
Turbidity 5.87	Turbidity	
Time: Gal. Purged_	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER
Description of Sampling Event:	value choloForm
	Sampler
Location (well name) WW - 4	Name and initials Charles Operate Han palmen
Date and Time for Purging 8-15-07 an	d Sampling (if different)
,	A CONTINOUS pamping
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event ChleroForm	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0 4. 0
Specific ConductanceuMHOS/cm	Well Depth Not Given
Depth to Water Before Purging 78.42	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Clendy & Hot Ext'l A	mb. Temp.(prior to sampling event) 31°C
Time:Gal. Purged	Time: Gal. Purged
Conductance 2024	Conductance
рн 6.84	pH
Temperature 17.39	Temperature
Redox Potential (Eh) 476	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Page 41 of 41

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) T = 2V/Q =
Number of casing volumes evacuated (if other	than two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Oth	er Than Energy Labs

•	<u>Sample</u> <u>Taken</u> (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)		
VOCs Nutrients	Ø N	3x40 ml	Y 69 Y 160	<u> </u>		
Heavy Metals	YN	250 ml		H_2SO_4 $(T)N$		
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added		
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N		
Other (specify) Two you chken	Y N	Sample volume	Y N	Y N If a preservative is used, Specify Type and		

Comments Alexies at 100	5. charles orvin & Ryom Palmer A. prametus tako af 1012.
present for Samplin Even	A. manetus take at 1012.
Weather as doudy and He	A 1015
Sampling Event took pl	ace as 1010
1011	

í

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event: 320 (HEET FOR GROUND WATER		
Description of Sampling Event: 5			
Location (well name) 764-(Sampler Name and initials Charles Olutus	Ryan	PAlmer
Date and Time for Purging 8-15-67 an	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Weil Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)	b		6
Weather Cond. Ext'l A	mb. Temp (prior to sampling event)_30		f
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Fime: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramet	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other	than two)
If well evacuated to dryness, number of gallons	s evacuated
Name of Certified Analytical Laboratory if Oth	ner Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
VOCs	(Y) N	3x40 ml	Y (1)	HCL ØN
Nutrients Transport Metals	Y N	100 ml	Y Ø	H ₂ SO ₄ N HNO ₃ Y N
Heavy Metals All Other Non-Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	Y N
corgain chloride	Y		N	If a preservative is used, Specify Type and Quantity of Preservative:

Comments Alrived ON Site at 0948 TOOK Samples at 0953 Left Site at 0955		
TOOK Samples at 0953		
Left Site at 0955		
	• :	

Redox Potential (Eh)___

Date: 2.25.07 Revision: 2

Page 40 of 41

1

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DAT <u>a</u> workşi	HEET FOR GROUND WATER		
PIELD DATA WORKSI Description of Sampling Event: 320 C	WARTER ChluroForm		
	Sampler Clarate Odinit	72.00/	JAIMER
Location (well name) 104-2	Name and initials Charles Olvins	Kyan	Primore
Date and Time for Purging 8-15-67 and	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)	•	
Conductance (avg)			
Well Water Temp. (avg)	•		6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 30.		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		

Redox Potential (Eh)_

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Fig	eld Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuate	ed (if other than two)
If well evacuated to dryness, numbe	er of gallons evacuated
Name of Certified Analytical Labor	ratory if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
,		The same of the same		
VOCs	O N	3x40 ml	Y 647 ,.	HCL Y N
Nutrients	Ø N	100 ml	Y ON .	H ₂ SO ₄ GP N
Heavy Metals	Y N	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Exercise chloride	Y N	Sample volume	Y N	Y N // If a preservative is used, Specify Type and Quantity of Preservative:

Comments Allived and Site at 1633	
Comments ARRIVED ON SITE OF 1633 TOOK Samples OF 1038 Left Site OF 1040	

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event:	QUARTER CHORDFORM
Location (well name) TW4-3	Sampler Name and initials Charles Orbin + Ryan Palmer
	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event chloroForw	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h)
Conductance (avg)	3" Well:(.367h) pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Cloudy & Hot Ext'l A	Amb. Temp.(prior to sampling event) 32
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged_	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Name of Certified Analytical Laboratory if Other Than Energy Labs_____

Type of Sample	Sam Tak (cire	en	Sample Volume (indicate if other than as specified below)	Filte (circ		(circle)	ive Added
VOCs	@	N	3x40 ml	Ý	(N)	HCL	Ø N
Nutrients	<u>(Y)</u>	N	100 ml	Y	M)	H ₂ SO ₄	(A) N
Heavy Metals	Ÿ	N	250 ml	Y	N	HNO ₃	YN
All Other Non- Radiologics	Y	N	250 ml	Y	N	No Preserv	ative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	YN
Other (specify)	Y	N	Sample volume	Y	N .	YN	
Energenic chloride	Y				N		M
<i>O</i>	,					Specify Ty	
						Quantity of	Preservative

Comments AprivED on Site at 1324	Chaeles 6. & Ryan P.	<i>present</i>
Comments Aprived on Site at 1324 Sampling Took place at 1329 left like at 1331		I
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	•	

Redox Potential (Eh)_

Date: 2,25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHOFT FOR CROLING WATER

Description of Sampling Event:	WARTER CHUROFORM		
Location (well name) 7w4~4	Sampler Name and initials Charles Olvin &	Rjan	PAlmer
	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific Conductance uMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)			6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 30		(
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		

Redox Potential (Eh)_

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

general control of the control of th	
Turbidity	Turbidity
Volume of Water Purged When Field Paramete	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$
Number of casing volumes evacuated (if other t	han two)
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Oth	er Than Energy Labs
_	

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
	- ch			HCI. Ø N
VOCs	Ø N	3x40 ml	Y 🐠 👵	TICO
Nutrients	(V) N	100 ml	Y 🐠	H ₂ SO ₄ Q N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Integratic Chloride	YN	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

comments ARRIVED ON SITE OF	39
Comments ALRIVED ON Site at 09: TOOK Samples at 0944 Left Site at 0947	•
Left Site at 0997	

Date: 2.25.07 Revision: 2

Page 40 of 41

1

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	Duarter Chioloform
	Complex
Location (well name) TWY-S	Name and initials Charles Ordin + Ryan Palmer
Date and Time for Purging 8-15-67 ar	nd Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event chloroForm	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Cloudy & Hot Bxt'l A	Amb. Temp.(prior to sampling event) 33.
Time: Gal. Purged	Ti CIID
Time:Gai. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal, Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Pedov Potential (Fh)	Pedox Potential (Rh)

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Paramete	ers are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. 5/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$
Number of casing volumes evacuated (if other t	han two)
f well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Othe	er Than Energy Labs

Type of Sample	Sample Taken (circle)		Sample Volume (indicate if other than as specified below)	Filtered (circle)		Preservative Added (circle)		dded	
VOCs	(1)	N	3x40 ml	Ÿ	N	<u></u>	HCL	ی	11
Nutrients	(Y)	N	100 ml	Y	M)		H ₂ SO ₄	G	ØN
Heavy Metals	Ÿ	N	250 ml	Y	N ·	• *	HNO₃	•	Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Pres	ervative	Added
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	•	Y N
Other (specify)	Y	N	Sample volume	Y	N	_	YN	•	
Inorganic chloride	Y				N		If a pres	ervative	√ is used,
							Specify	Type an	d
							Quantit	y of Pres	ervative:
			,						
j.]				i		

Comments	ARRIVEN	M Sit	E AT 133	3 ch	reles 6. \$	Ryan P.	present
Sampl	ing Too	c place	E AT 133 AT 133	80			(
18ft	site at	13 40		· · · · · · · · · · · · · · · · · · ·			

Date: 2.25.07 Revision: 2

Page 40 of 41

1

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event: 3 4 4	HEET FOR GROUND WATER		
-			
Location (well name) TW4-6	Name and initials Charles Olvins	Ryan	PAlmer
Date and Time for Purging 8-15-67 an	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)	,	
	pH of Water (avg)		
Well Water Temp. (avg)			6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 28°C	,	(
Time: Gal. Purged_	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		*

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity				
Volume of Water Purged When Field Paramete	rs are Measured				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$				
Number of casing volumes evacuated (if other t	han two)				
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other	er Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
•		Not make to		
VOCs	Ø N	3x40 ml	Y 000	HCL ON
Nutrients	Ø N	100 ml	Y (10)	H ₂ SO ₄ Ø N
Heavy Metals	Y N	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	YN
myanıc chloride	y		\sim	If a preservative is used, Specify Type and Quantity of Preservative:

Comments ARRIVED ON Site at 0930)
Comments ARRIVED ON Site at 0930 TOOK Samples at 0935 Left Site at 0938	
Let 1 3/10 M 0730	

S.

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS Description of Sampling Event: 320 C	HEET FOR GROUND WATER		
Description of Sampling Event:			
Location (well name) TWY-7	Sampler Name and initials Charles Olytous	Ryan	PAlmer
Date and Time for Purging 8-15-67 an	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event_ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
	pH of Water (avg)		
Well Water Temp. (avg)			6
Weather Cond. Ext'l-A	mb. Temp.(prior to sampling event) 32		(,
Time: Gal. Purged	Time:Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		· · · ′
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature_		
Redox Potential (Eh)	Redox Potential (Eh)		٠.

Date: 11.17.06 Revision: 1

Power of Samula	Samula	Comila Valuma	T1114 B	Preservative	<u> </u>
Name of Certified Analy	ytical Laboratory	y if Other Than Energ	gy Labs	1	-
if well evacuated to dry	ness, number of	gallons evacuated	· · · · · · · · · · · · · · · · · · ·		-
Number of casing volun	nes evacuated (if	f other than two)			•
Flow Rate (Q), in gpm. S/60 = =				ng volumes (2V)	
Pumping Rate Calculati	on				
Volume of Water Purge	d When Field P	arameters are Measu	red		-
Turbidity		Turbidity_			- ·
Turbidity		Turbidity_			_

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
,		Missing Committee		23
VOCs	OV N	3x40 ml	Y (N) ,	HCL Y N
Nutrients	Ø N	100 ml	Y	H ₂ SO ₄ CY N
Heavy Metals	YN	250 ml	YN	HNO₃ Y N
All Other Non- Radiologics	Y N	250 ml .	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Tourganic chloride	X N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments ARRIVED ON SITE AT 0956 TOOK Samples AT 1001 Left Site AT 1003	
TOOK Samples at 1001	
Left Site at 1003	
	<u> </u>
	• • • • • • • • • • • • • • • • • • • •

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DATA WORKS	HEET FOR GROUND WATER	
Description of Sampling Event:	MARTER ChloroForm	
Location (well name) TW4-8	Sampler Name and initials Charles Olytub	RIAN PAIMER
Date and Time for Purging 8-15-67 an	d Sampling (if different)	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)	
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event	
pH Buffer 7.0	pH Buffer 4.0	
Specific ConductanceuMHOS/cm	Well Depth	
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)	
	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 31	1
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH:	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	
Turbidity	Turbidity	
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	, ,

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Ouality Assurance Plan (QAP)

Quanty Assurance Fran (QAL)	1 ago 41 01 41
Turbidity	Turbidity
Volume of Water Purged When Field Parar	neters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) T = 2V/Q =
Number of casing volumes evacuated (if oth	ner than two)
If well evacuated to dryness, number of gall	ons evacuated
Name of Certified Analytical Laboratory if	Other Than Energy Labs
,	

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
	(A)).	2-40-1	Y 68	HCL Ø N
VOCs	OD N	3x40 mi	Y W	
Nutrients		100 ml		112004
Heavy Metals	YN	250 ml	Y N	24103
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	YN	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify) Trougain chloride	YN	Sample volume	YN	Y N
Tesotronsi Gelande	γ		N	If a preservative is used, Specify Type and Quantity of Preservative:

comments ARRIVED ON Site at 1024	
Comments ARRIVED ON SITE AT 1024 TOOK Samples AT 1029 Left Site AT 1031	
Lett Site RT 11151	
	•

Date: 2.25.07 Revision: 2

Page 40 of 41

I

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER
·	` C
Location (well name) TW4-9	Name and initials Charles Orbin & Ryan Palmer
Date and Time for Purging 8-15-07 an	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event chloroForw	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Cloudy & Hot Ext'l A	Amb. Temp.(prior to sampling event) 33
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity			
Volume of Water Purged When Field Paramete	rs are Measured			
Pumping Rate Calculation				
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$			
Number of casing volumes evacuated (if other th	nan two)			
If well evacuated to dryness, number of gallons evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
VOCs	N (Y)	3x40 ml	Y (N)	HCL W N
Nutrients	(Y) N	100 ml	YN	H ₂ SO ₄ V N
Heavy Metals	YN	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml .	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	Y N
Inuganic chloride	Y		~	If a preservative is used,
				Specify Type and Quantity of Preservative:
:				

Comments	APRIVEN	M Six	E AT 1347 AT 1347	2 chaeles	6. \$ Ryan P.	present
Samp	ing TOO	c place	at 1347	•		•
10/1	Site at	1349				
				·		

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ſ

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER
	S1
Location (well name) TW4-10	Name and initials Charles Ordin + Ryon Palmere
Date and Time for Purging 8-15-67 an	nd Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event chlorofoew	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
	Redox Potential (Eh)Turbidity
Weather Cond. Cloudy & Hot Ext'l A	Amb. Temp.(prior to sampling event) 32
	•
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
рН	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)		Page 41 of 41	
Turbidity		Turbidity_		
Volume of Water Purge	ed When Field I	Parameters are Measi	ıred	
Pumping Rate Calculati	ion			
Flow Rate (Q), in gpm. S/60 = =			acuate two casing =	
Number of casing volun	nes evacuated (i	if other than two)		***
If well evacuated to dry	ness, number of	gallons evacuated		
Name of Certified Analy	ytical Laborator	y if Other Than Ener	gy Labs	
Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs	N (S)	3x40 ml	Y (N)	-
Nutrients	(Y) N	100 ml	Y N	H ₂ SO ₄ O N
Heavy Metals	YN	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	Y N	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N .	Y N
Tabyganic chloeide	Y		~	If a preservative is used, Specify Type and Quantity of Preservative:

Comments Africe ON Site at 1316 Sampling Took place at 1321 left Side at 1323	Charles 6. & Ryan P. present
fleft Dute at 1315	
	•

Redox Potential (Eh)____

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKSI	TEET FOR GROUND WATER	
	Sampler chloroForm	
Location (well name) TW4-11	Name and initials Charles OPUN \$	Ryan Palmes
Date and Time for Purging 8-15-07 and	d Sampling (if different)	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)	
Sampling Event ChloroFoom	Prev. Well Sampled in Sampling Event	
pH Buffer 7.0	pH Buffer 4.0	
Specific ConductanceuMHOS/cm	Well Depth	
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)	
Conductance (avg)	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity	6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)	A. C.
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	.· ·
Turbidity	Turbidity	
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
PH	PH	

Redox Potential (Eh)_

Date: 11.17.06 Revision: 1

Turbidity			Turbidity_					·
Volume of Water Purge	d When	Field l	Parameters are Measu	red_				
Pumping Rate Calculati	<u>on</u>							
Flow Rate (Q), in gpm. S/60 = =							olumes (2V)	
Number of casing volum	ies evaci	uated (if other than two)					
If well evacuated to dryr	iess, nur	nber o	f gallons evacuated					
Name of Certified Analy	tical La	borato	ry if Other Than Ener	gy L	abs			
Type of Sample	San Tal (cir	cen	Sample Volume (indicate if other than as specified below)		tered rcle)		Preservat (circle)	ive Added
			To the state of th					
VOCs	(3)	N	3x40 ml	Y	(M)	~*	HCL	Ø N
Nutrients	80	N	100 ml	Y	(B)		H ₂ SO ₄	Ø N
Heavy Metals	Y	N	250 ml	Y	N ·		HNO ₃	Y N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preserv	vative Added
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y N
Other (specify)	Y	N	Sample volume	Y	N		Y N	
Trongania chlunde	γ				N		Specify Ty	vative is used, vpe and f Preservative:

Comments Allive ON Si Samples Taken at Dime left Site	te at	1044		
Samples Taken at	1650			
Dine left Site	1057-	•		
			• .:	
			•	

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FOR GROUND WATER		
Description of Sampling Event:		."	
Location (well name) TWY-12.	Name and initials Charles Olytwis	Ryan	PAlmer
Date and Time for Purging 8-15-67 an	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event chloroform	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
	pH of Water (avg).		
Well Water Temp. (avg)			63
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 24		(
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged_	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring

Quality Assurance Plan (C	(AP)			Page 41 of 41
Turbidity	Market and the state of the sta	Turbidity_		
Volume of Water Purge	d When Field P	arameters are Measu	red	
Pumping Rate Calculati	<u>on</u>			
Flow Rate (Q), in gpm. S/60 = =				ng volumes (2V)
Number of casing volum	ies evacuated (if	f other than two)		
If well evacuated to dryr	less, number of	gailons evacuated		The state of the s
Name of Certified Analy	tical Laboratory	y if Other Than Ener	gy Labs	•
Type of Sample	<u>Sample</u> <u>Taken</u> (circle)	Sample Volume (indicate if other than as specified	<u>Filtered</u> (circle)	Preservative Add

Type of Sample	Sample Sample Volume Filtered (circle) than as specified below)				eservat cle)	ive Add	<u>led</u>			
1700	(52)	N	3x40 ml	Y	4	·····	HC	Y	·	N
VOCs Nutrients	8	N	100 ml	Y	(N)	<u>~ ^ ^ </u>	H		<u>(8)</u>	N
Heavy Metals	Y	N	250 ml	Ÿ	N		HN	· · · · · · · · · · · · · · · · · · ·	Y	N
All Other Non- Radiologics	Y	N	250 ml	Y	N				ative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ S	O ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y	N		
thorganic chlorists	Y				N		Spe	cify Ty	rative is pe and Preser	

Comments ALRIVED ON SITE AT	0850		
Comments Allived ON Site at TOOK Samples at 0858 Left Site at 0858			
		•	

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	MARTER Chluroform		
	Sampler Name and initials Charles Olvin 8	Ryan	PAIMER
	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity		
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 24°		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		<u>-</u>
Temperature	Temperature		
• *	Redox Potential (Eh)		
Turbidity	Turbidity		
Time:Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		•.

Mill – Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Quanty 2150 manage 2 1 1 1 (4	£ <i>)</i>						
Turbidity			Turbidity_				•
Volume of Water Purge	d When	Field l	Parameters are Measu	ıred_			
Pumping Rate Calculati	<u>on</u>						
Flow Rate (Q), in gpm. S/60 = =						g volumes (2V)	
Number of casing volum	ies evaci	ıated (i	if other than two)				
If well evacuated to dryr	iess, nur	nber of	f gallons evacuated			-	
Name of Certified Analy	tical La	borato:	ry if Other Than Ener	gy La	bs		
Type of Sample	Sam Tal (cir		Sample Volume (indicate if other than as specified below)	Filt (cir	ered cle)	Preservati (circle)	ve Added
VOCs	D	N	3x40 ml	Y	(C)	, HCL	Ø N
Nutrients Vocs	0	N		Ÿ	B	H ₂ SO ₄	ØN
Heavy Metals	Y	N	100 ml 250 ml	Ÿ	N	HNO ₃	YN
All Other Non- Radiologics	Y	N	250 ml	Y	N		ative Added
Gross Alpha	Y	N	1,000 ml	Y	N	H ₂ SO ₄	ΥN
Other (specify)	Y	N	Sample volume	Y	N	Y N	
Taerganie chloeide	Y				.N.	Specify Typ	ative is used, be and Preservative:

Comments ARRIVED ON Site at 0859	
Comments ARRIVED ON SITE AT 0859 TOOK Samples AT 0904 Left Site AT 6967	 1
LETT SITE NI 0107	

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event: 320 C	MARTER CHUROFORM		
	Sampler Name and initials CNARIES ORVINS	Ryan	PAIMER
	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event_ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)	-	
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)			0
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 24.		Carl
Time: Gal. Purged	Time:Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Bh)		7,

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	s are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$
Number of casing volumes evacuated (if other th	an two)
If well evacuated to dryness, number of gallons of	eyacuated
Name of Certified Analytical Laboratory if Othe	r Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	<u>Filtered</u> (circle)	Preservative Added (circle)
		And the second		77 37
VOCs	Y N	3x40 ml	Y N ,-	HCL Y N
Nutrients	YN	100 ml	Y N	H ₂ SO ₄ Y N
Heavy Metals	YN	250 ml	Y N	HNO ₃ Y N
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	YN	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments ARRIVED ON Site of	0908	
Comments ARRIVED ON SITE AT TOOK Samples at 09/3 Left Site at 09/6		

Date: 2.25.07 Revision: 2

Page 40 of 41

l

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	DUARTER CHIOPOFORM	
-	Sampler Name and initials Charles Ordin R	yan Palmer
	d Sampling (if different)	
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) (whn how	Dedicated
	Prev. Well Sampled in Sampling Event	
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0	
Specific ConductanceuMHOS/cm	Well Depth Nor Available	
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h)	
Conductance (avg)	3" Well:(.367h) pH of Water (avg)	•
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	77
Weather Cond. Cloudy \$ 167 Ext'l A	Amb. Temp.(prior to sampling event)	C.
Time: 13.57 Gal. Purged N/A	Time: Gal. Purged	
Conductance 3316	Conductance	
рн 7.94	рН	
Temperature 20.18	Temperature	V
Redox Potential (Eh) 165	Redox Potential (Eh)	
Turbidity3.17	Turbidity	<i>,</i> '
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	рН	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	٠.
ROUGH I COMMING (EM)	TOTOL & COMMING (FUI)	,

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field	Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	
Number of casing volumes evacuated ((if other than two)
	f gallons evacuated
Name of Clarkified Assolution 1.7.	ry if Other Than Energy Labs

Type of Sample	Tal	iple ken kle)	Sample Volume (indicate if other than as specified below)		tered rcle)		(circle)	ative Add	ied ·
VOCs Nutrients	Q	N	3x40 ml	Ý	Ø		HCL.	Q	N
Heavy Metals	¥	N N	100 ml 250 ml	Y	N		H ₂ SO ₄ HNO ₃	<u> </u>	N N
All Other Non- Radiologics	Y	N	250 ml	Ŷ	N			rvative A	
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify) Tanganic Chloride	Ÿ	N	Sample volume	Y	N N	-	YN	N	
	/						If a prese Specify T Quantity	ype and	_

Comments Aprile W Site at 1353 Sampling Took place at 1358 left list at 1404 Neather is land and hat Water is parameters taken at 1357	Chaeles 6. & Ryan P. Dresent
Sampling Took place at 1358	
18.61 Site at 1404	
Weather is Cloud and host Water is	clear with Some Sediment
Desameters taken at 13.57	
	,

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event:	MARTER CHLOROFORM
Location (well name) TW4-16	Sampler Name and initials Charles Odvin & Ryan Palmor
Date and Time for Purging 8-15-07 ar	d Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event_ONOROFEEM	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	amb. Temp.(prior to sampling event) 30
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged_
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill - Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Ouality Assurance Plan (QAP)

(farzy)	1 ago 41 01 4
Turbidity	Turbidity
Volume of Water Purged When Fiel	d Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	
Number of casing volumes evacuated	d (if other than two)
If well evacuated to dryness, number	of gallons evacuated
Name of Certified Analytical Labora	atory if Other Than Energy Labs

Type of Sample	e of Sample Taken (circle)		<u>Filtered</u> (circle)	Preservative Added (circle)		
VOCs Nutrients	Ø N	3x40 ml	Y 60	HCL V N H ₂ SO ₄ V N		
Heavy Metals All Other Non- Radiologics	Y N Y N	250 ml 250 ml	Y N · · · Y N			
Gross Alpha Other (specify) Burgmen Chloside	Y N Y N	1,000 ml Sample volume	Y N Y N	H ₂ SO ₄ Y N Y N If a preservative is used,		
				Specify Type and Quantity of Preservative		

Comments Arriveo at 1054	
Comments Arrived at 1054 Samples Taken at 1059 Suff Site at 1991	
101	
	- ;
	•

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event:	HEEL FOR GROUND WATER
Description of Sampling Event:	
Location (well name) TW4-17	Sampler Name and initials Charles Orvin Ryan Palmer
	nd Sampling (if different)
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Dedicated
Sampling Event chloroFoew	Prev. Well Sampled in Sampling Event
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth130
Depth to Water Before Purging 78.33	Casing Volume (V) 4" Well: 33.74/(.653h) 3" Well: (.367h)
Conductance (avg)	pH of Water (avg)
	Redox Potential (Eh)Turbidity
Weather Cond. Cloudy \$ 167 Ext'l A	Amb. Temp.(prior to sampling event) 32
Time: 12.57 Gal. Purged 3. 3	m' O.I.D
	Time:Gal. Purged
Conductance 4052	Conductance
рн <u>8.70</u>	pH
Temperature 16.06	Temperature
Redox Potential (Eh) 257	Redox Potential (Eh)
Turbidity 12, 7	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity
Volume of Water Purged When Field Parameter	ers are Measured39.6
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \frac{2 hr}{20 mn}$
Number of casing volumes evacuated (if other t	han two) / Casing Volume
If well evacuated to dryness, number of gallons	evacuated
Name of Certified Analytical Laboratory if Other	er Than Bnergy Labs

Type of Sample	Sample Taken (circle)	Taken (indicate if other		Preservative Added (circle)		
VOCs	(V) N	3x40 ml	Ý (N) ,.	HCL W N		
Nutrients	(Y) N	100 ml	YN	H ₂ SO ₄ (Y) N		
Heavy Metals	Ϋ́Ν	250 ml	YN	HNO ₃ Y N		
All Other Non- Radiologics	Y N	250 ml	YN	No Preservative Added		
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N		
Other (specify)	YN	Sample volume	Y N	YN		
Tabiganic chibe ide	y		N	If a preservative is used,		
			,	Specify Type and Quantity of Preservative:		

Comments APRIVED ON SITE	at 1235	chaeles 6. \$	Ryan P. present
18AT DUR OF 14SU	- Pu	one began, 12	47
	Sample SU	parge 12ndod.	<u> </u>
Wall us chear white Dame	Very fire Sw	pended porticles	· · · ·

Redox Potential (Eh)

Date: 2.25.07 Revision: 2

Page 40 of 41

1

ATTACHMENT 1 WHITE MESA URANIUM MILL ATA WODEGUEET FOR GROUND WATER

Description of Sampling Event:	harter Chloroform		
	0lan		
Location (well name) TW4-18	Name and initials Charles Olvius	Ryan	PAIMER
Date and Time for Purging 8-/5-67 and	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific Conductance uMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)	•	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity		13.
Weather Cond. Clear & WARM Ext'l A			(,
Time: Gal. Purged	Time: Gal. Purged_		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		

Redox Potential (Eh)____

Date: 11.17.06 Revision: 1

Quality Assurance Plan (6	(AP)			Page 41 of 41
Turbidity		Turbidity_		
Volume of Water Purge	d When Field	Parameters are Measu	ıred	
Pumping Rate Calculati	<u>on</u>			
Flow Rate (Q), in gpm. S/60 = =				ng volumes (2V)
Number of casing volun	nes evacuated (if other than two)		
If well evacuated to dry	ness, number o	f gallons evacuated		
Name of Certified Analy	tical Laborato	ry if Other Than Ener	gy Labs	
	-			
Type of Sample	<u>Sample</u> <u>Taken</u>	Sample Volume (indicate if other	Filtered (circle)	Preservative Ad (circle)

Type of Sample	pe of Sample Taken (circle)		Sample Volume (indicate if other than as specified below)		tered rcle)		Preserv (circle)	ative Adde	<u>.</u>
,					77				
VOCs	(2)	N	3x40 ml	Y		~ <u>*</u>	HCL	<u>(Y)</u>	N
Nutrients	(Y)	N	100 ml	Y	M		H ₂ SO ₄	(D)	N
Heavy Metals	Y	N	250 ml	Y	N .		HNO₃	Y	N
All Other Non-	Y	N	250 ml	Y	N		No Pres	ervative Ad	ded
Radiologics								•	
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y N		_
Intorganic chloride	(1)		250mL		N				N
							Specify '	ervative is u Type and of Preserva	

Comments ARRIVED ON SITE AT TOOK Samples AT 08/0 Left Site AT 08/8	0805	
TOOK Samples at 0810		
Lett Site at 108/8		

Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

FIELD DATA WORKS Description of Sampling Event:	HEET FOR GROUND WATER
Description of Sampling Event:	Martin chlororoum
Location (well name) TN4-19	Sampler Name and initials charks of the plants
Date and Time for Purging 8-15-67 and	• • • • • • • • • • • • • • • • • • •
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Continuous Pumping
•	Prev. Well Sampled in Sampling Event
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging 71.94	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Cloudy & Het Ext'l A	Amb. Temp.(prior to sampling event) 33
Time: 1523 Gal. Purged	Time: Gal. Purged
Conductance 2870	Conductance
рн 7.59	pH
Temperature 17.46	Temperature
Redox Potential (Eh) 173	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)

Date: 11.17.06 Revision: 1

Page 41 of 41

Turbidity	Turbidity
Volume of Water Purged When Field	Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	
Number of casing volumes evacuated (if other than two)
	f gallons evacuated
Name of Certified Analytical Laborator	ry if Other Than Energy Labs

Tal	<u>cen</u>	Sample Volume (indicate if other than as specified below)				Preservat (circle)	ive Added
0	N	3x40 ml	Y	6	<u> </u>	HCL	(Ý, N
<u>(V)</u>	N	100 ml	Y	N		H ₂ SO ₄	N N
Y	N	250 ml	Y	N			YN
Y	N	250 ml	Y	N			ative Added
Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y N
Y	N	Sample volume	Y	N			
У				N	•		\checkmark
1						Specify Ty	
						Quantity of	Preservative:
	Tal (cir Y Y Y	Y N Y N Y N	Taken (indicate if other than as specified below) N 3x40 ml N 100 ml Y N 250 ml Y N 1,000 ml	Taken (indicate if other than as specified below)	Taken (circle) Circle Ci	Taken (circle) (indicate if other than as specified below)	Taken (circle) (circle) (circle) (circle)

Comments Arrive at 1520 ch	rolles orvin & Ruan Dalmer	
1523. Develother in stand to	mpling, TOOK perameters at host, water is yery dear NO Fine	==
Began Sampling at 1524	They were is you then NO PAN	=_>
X Y SWU AN ISCT.	· · · · · · · · · · · · · · · · · · ·	

į

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	DUALTER CHIOPOFORM
	Samular
Location (well name) TW4-20	Name and initials Charles Ordin Ryan Palmed
Date and Time for Purging 8-15-67 an	•
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet) Continueds pumping
Sampling Event chloroFoew	Prev. Well Sampled in Sampling Event
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth warralo (Le
Depth to Water Before Purging 67.82	Casing Volume (V) 4" Well:(.653h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Cloudy & Hot Ext'l A	amb. Temp.(prior to sampling event)
Time: 14/7 Gal. Purged	Time: Gal. Purged
Conductance 2963	Conductance
рн 7.19	pH
Temperature 17.68	Temperature
Redox Potential (Eh) 147	Redox Potential (Eh)
Turbidity 57	Turbidity
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Bh)

Mill – Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameter	s are Measured				
Pumping Rate Calculation					
	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$				
Number of casing volumes evacuated (if other th	an two)				
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other Than Energy Labs					

Type of Sample	Tal	Sample V Taken (indicate i (circle) than as sp below)		r (circle)			Preservative Added (circle)		
VOCs	0	N	3x40 mi	Ý	Ø,	3.5	HCL	Ø N	
Nutrients Heavy Metals	<u>(Y)</u> _	N N	100 ml	Y	N N		H ₂ SO ₄ HNO ₃	(y) N Y N	
All Other Non- Radiologics	Y	N	250 ml	Y	N			rvative Added	
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y N	
Other (specify)	Y	N	Sample volume	Y	N		Y N		
Tapyganic chloride	7				~		If a prese Specify T	rvative is used,	
								of Preservative:	

Comments Alein	ED ON SITE AT 141	1413 Chaeles 6. \$	Ryan P. present
Sampling 7	ook place at 141	18	
18Ht Site a	land to hat was		
Weather is	Louds to hat was	ter is	<u> </u>
Donameters	were outled at 1	1417	

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ĺ

ATTACHMENT 1

Description of Sampling Event:	HEET FOR GROUND WATER		
	- ·	_	
Location (well name) TW4-2	Name and initials Charles Olvins	Ryan	PAIMER
Date and Time for Purging 8-15-67 and	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)			6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 19"		A second
Time:Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		**

Mill - Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameter	ers are Measured				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$				
Number of casing volumes evacuated (if other	than two)				
If well evacuated to dryness, number of gallons	s evacuated				
Name of Certified Analytical Laboratory if Other Than Energy Labs					
•					

Type of Sample	Sam Tak (circ	en	Sample Volume (indicate if other than as specified below)	r (circle) (circle)		tive Add	led			
VOCs	0	N	3x40 ml	Y	(D)	24	HC		0	N
Nutrients	<u>(2)</u>	N	100 ml	Y	<u>_</u> Ø	······································	H ₂ S	O ₄	<u>~</u>	N
Heavy Metals	Y	N	250 ml	Y	N		HN		<u>Y</u>	N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No	Preser	vative A	dded
Gross Alpha	Y	N	1,000 ml	Y	_N		H ₂ S	O ₄	<u> Y</u>	N
Other (specify)	Y	N	Sample volume	Y	N		Y	N		
Inorganie Salmide	Y				N		Spe	cify T	vative is ype and of Preser	

Comments Allived ON Site at 1 TOOK Samples at 0825 Left Site at 0828	0821
TOOK Samples at 0825	
Left Site at 0828	

Redox Potential (Eh)_

Date: 2.25.07 Revision: 2

Page 40 of 41

ŧ

ATTACHMENT 1 WHITE MESA URANIUM MILL

FIELD DATA WORKSI	HEET FOR GROUND WATER
Description of Sampling Event:	HEET FOR GROUND WATER Quarter Character
Location (well name) 7W4-22	Sampler Name and initials charles Opin & Gar Polmere
Date and Time for Purging 8-15-07 an	V
	Well Pump (if other than Bennet)
Sampling Event_ChlcroForem	Prev. Well Sampled in Sampling Event
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event)
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Bh)

Mill - Groundwater Discharge Permit Groundwater Monitoring Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Turbidity	Turbidity				
Volume of Water Purged When Field Parameter	rs are Measured				
Pumping Rate Calculation					
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $				
Number of casing volumes evacuated (if other th	nan two)				
If well evacuated to dryness, number of gallons evacuated					
Name of Certified Analytical Laboratory if Other	r Than Energy Labs				

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Ø N	3x40 ml	Y 60 ,-	HCL ON N
Heavy Metals All Other Non-Radiologics	Y N Y N	100 ml 250 mi 250 ml	Y N Y N	H ₂ SO ₄
Gross Alpha Other (specify) The grant should	Y N Y N	1,000 ml Sample volume	Y N Y N	H ₂ SO ₄ Y N Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Horrive, on site at 1105 Samples, taken at 1110 Left Site at 1112		
Samalas, taken at 1110		
Left Site at 1/17		
	•	

Date: 2.25.07 Revision: 2

Page 40 of 41

ļ

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event: 320	HEET FOR GROUND WATER		
Description of Sampling Event: 5			
Location (well name) TN4-23	Sampler Name and initials Charles Olutus	Ryan	PAlmer
Date and Time for Purging 8-15-67 an	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event_ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth		
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)		
Conductance (avg)	pH of Water (avg)		
Well Water Temp. (avg)			
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 26		Carlo I
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
рН	рН		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		

•		
=		
•		

Mill – Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Onality Assurance Plan (QAP)

CHAIRS Assurance I am ((AL)						rage 41	. 01 71	
Turbidity		*****	Turbidity_						
Volume of Water Purge	d When	Field l	Parameters are Measu	ıred_	······································				
Pumping Rate Calculati	<u>on</u>								
Flow Rate (Q), in gpm. S/60 = =			Time to eva T = 2V/Q =				lumes (2V)	·····	
Number of casing volum	es evac	uated (if other than two)		· ·	*******	· .		
If well evacuated to dryn	ess, nui	nber of	gallons evacuated						
Name of Certified Analy	tical La	borato	ry if Other Than Ener	gy La	bs				
Type of Sample	Tal	i <u>ple</u> ken cle)	Sample Volume (indicate if other than as specified below)	Filt (cir	ered cle)	· · · · <u> ·</u>	Preservati (circle)	ve Add	led
			The same of the sa						.,
VOCs	Y	N	3x40 ml	Y	N	~ *	HCL	Y	
Nutrients	Y	N	100 ml	Y	N	<u></u>	H ₂ SO ₄		N
Heavy Metals	Y	N	250 ml	Y	N		HNO ₃	Y	
All Other Non- Radiologics	Y	N	250 ml	Y	N		No Preserv		
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ SO ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y N If a preserv Specify Typ Quantity of	pe and	

Comments ALRIVED ON SITE AT 09 TOOK Samples AT 0926 Left Site AT 0929	121
Left Site at 0929	

Redox Potential (Eh)_____

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	DUCKTER CHOICEFORM	
	n 1.	1
Location (well name) TW4-24	Name and initials charles Operal B	Kyan Palmer
Date and Time for Purging 8-15-07 and	d Sampling (if different)	·
A .	Well Pump (if other than Bennet)	
Sampling Event ChocoFoem	Prev. Well Sampled in Sampling Event	
pH Buffer 7.0	pH Buffer 4.0	
Specific ConductanceuMHOS/cm	Well Depth	
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)	
Conductance (avg)		
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity	(3)
Weather Cond Ext'l A	mb. Temp.(prior to sampling event)	Con
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	рН	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	y.*
Turbidity	Turbidity	
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	

Redox Potential (Eh)____

Date: 11.17.06 Revision: 1

Turbidity	Turbidity
Volume of Water Purged When Field l	Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	
Number of casing volumes evacuated (if other than two)
	gallons evacuated
	y if Other Than Energy Labs

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Ø N	3x40 ml 100 ml	Y & ,	HCL SO N H ₂ SO ₄ SO N
Heavy Metals All Other Non- Radiologics	Y N Y N	250 ml 250 ml	Y N Y N	HNO ₃ Y N No Preservative Added
Gross Alpha Other (specify) Tragnic chleride	Y N Y N	1,000 ml Sample volume	Y N Y N	H ₂ SO ₄ Y N Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments Arrive ON SIVE at 1116 Samples taken at 1121 left site at 1123	
Samples Taken at 1121	
left site at 1/23	
	· · · · · · · · · · · · · · · · · · ·

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event: 320	iket for ground water		
Description of Sampling Event:		•	
Location (well name) TWY-25	Sampler Name and initials Charles Olytwa	Ryan	PAlme
Date and Time for Purging 8-15-67 and	d Sampling (if different)		
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)		
Sampling Event_ChloroForm	Prev. Well Sampled in Sampling Event		
pH Buffer 7.0	pH Buffer 4.0		
Specific ConductanceuMHOS/cm	Well Depth_		
Depth to Water Before Purging	Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)		
	pH of Water (avg)		
Well Water Temp. (avg)	Redox Potential (Bh) Turbidity		6
Weather Cond. Ext'l A	mb. Temp.(prior to sampling event) 19		1.00
Time: Gal. Purged	Time: Gal. Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		
Turbidity	Turbidity		
Time:Gal. Purged	Time: Gal, Purged		
Conductance	Conductance		
pH	pH		
Temperature	Temperature		
Redox Potential (Eh)	Redox Potential (Eh)		*

Mill – Groundwater Discharge Permit
Groundwater Monitoring

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity						
Volume of Water Purged When Field Parameters are Measured							
Pumping Rate Calculation							
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$						
Number of casing volumes evacuated (if other th	han two)						
If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytical Laboratory if Other	er Than Energy Labs						

Type of Sample	San Tal (cir	<u>cen</u>	Sample Volume (indicate if other than as specified below)		ered cle)			serva cle)	tive Add	<u>led</u>
			Tricking Trace of	<u> </u>	-2				<u> </u>	
VOCs	<u> </u>	N	3x40 ml	Y	(1)	~ <u> </u>	HC		<u>(A)</u>	
Nutrients	<u> </u>	N	100 ml	Y	Ø		H ₂ S	<u>O₄</u>	Ø	N
Heavy Metals	Y	N	250 ml	Y	N		HN	O ₃	Y	N
All Other Non- Radiologics	Y	N	250 ml	Y	N		No	Preser	vative A	dded
Gross Alpha	Y	N	1,000 ml	Y	N		H ₂ S	O ₄	Y	N
Other (specify)	Y	N	Sample volume	Y	N		Y	N		
Tresgoni chleide	У				M		T.C.			<i>/</i> /
<i>V</i>	•						If a preservative is used Specify Type and Quantity of Preservativ			

Comments ARRIVED ON Site at 0832		
Comments ARRIVED ON SHE AT 0832 TOOK Samples AT 0837 Left Site AT 0830		
Left Site at 0830		
	.,'	

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUND WATER

Description of Sampling Event:	Quaetee chloeofoem
	Sampler Name and initials chaeles obvious byan palmen
Date and Time for Purgingar	nd Sampling (if different) 8-13-07 15/8
Well Purging Equip Used:pump orbailer	Well Pump (if other than Bennet)
Sampling Event <u>ChleloFoe m</u>	Prev. Well Sampled in Sampling Event_w/A
pH Buffer 7.0	pH Buffer 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext'l A	Amb. Temp.(prior to sampling event)
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Eh)
Turbidity	Turbidity
Time: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Bh)	Redox Potential (Eh)

DJ. Blank

Mill - Groundwater Discharge Permit Groundwater Monitoring Ouality Assurance Plan (QAP)

Date: 11.17.06 Revision: 1

Page 41 of 41

Sermed Transfer (Sermi)	1 ago 41 01 4
Turbidity	Turbidity
Volume of Water Purged When Field l	Parameters are Measured
Pumping Rate Calculation	
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = $
Number of casing volumes evacuated (if other than two)
If well evacuated to dryness, number of	gallons evacuated
Name of Certified Analytical Laborator	y if Other Than Energy Labs
•	. •

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Ø N Ø N	3x40 ml 100 ml	Y ØP ,. Y Ø	HCL Ø N H ₂ SO ₄ Ø N
Heavy Metals All Other Non- Radiologics	Y N Y N	250 ml	Y N Y N	HNO ₃ Y N No Preservative Added
Gross Alpha Other (specify) Innugatic Chloride	Y N Y N	1,000 ml Sample volume	Y N Y N	H ₂ SO ₄ Y N Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments	D.T.	Blank		
			• • •	

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP) Date: 2.25.07 Revision: 2

Page 40 of 41

<u>ATTACHMENT 1</u> WHITE MESA URANIUM MILL

Description of Sampling Event: 312	HEET FOR GROUND WATER
Description of Sampling Event. 578 C	Sampler Name and initials Ryon Pulmer Charles Orun
Location (well name) 1 W (-02)	Name and midals ryon i which Cravity
Date and Time for Purging $8-/3-08$ an	d Sampling (if different)
	Well Pump (if other than Bennet) Crund fos
Sampling Event 3rd Quarter Chlord	Prev. Well Sampled in Sampling Event 1/4
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh)Turbidity
Weather Cond. Ext ³ A	mb. Temp.(prior to sampling event)
Time:Gal. Purged	Time: Gal. Purged
Conductance 3.3	Conductance
рн 4.97	pH
Temperature 3474	Temperature
Redox Potential (Eh) 539	Redox Potential (Eh)
Turbidity 13,3	Turbidity
Time:Gal. Purged	Time:Gal. Purged
Conductance	Conductance
pH	pH
Temperature	Temperature
Redox Potential (Eh)	Redox Potential (Bh)

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity						
Volume of Water Purged When Field Parameters are Measured							
Pumping Rate Calculation							
Flow Rate (Q), in gpm. S/60 = =							
Number of casing volumes evacuated (if other than two)						
If well evacuated to dryness, number of	gallons evacuated						
Name of Certified Analytical Laborator	ry if Other Than Energy Labs						

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
		The company of the Company		
VOCs	(Y) N	3x40 ml	Y (N) ,.	HCL ② N
Nutrients	M (X)	100 ml	Y (N)	H₂SO₄ Ø N
Heavy Metals	Y N	250 ml	YN	HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 mI	Y N	H ₂ SO ₄ Y N
Other (specify) France Chloryde	♡ N	Sample volume	Y N	Y N If a preservative is used, Specify Type and Quantity of Preservative:

Comments	This 50 ga	i's llans	<u>د</u> ه+ ر	rinsat Nitric	e Sa Acid	no le follou	of red	the by	Grun 50 q	<u>d</u> for allons
0+ 11	gui, Mox	<u>+61</u>	lowed	67	<u>50 g</u>	<u>allons</u>	- 0-	1-1/2C) ~	
										_

50 Nitric + DI HOO 50 Liqui Nox + OIHO

Ringer 2 fos

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 2.25.07 Revision: 2

Page 40 of 41

ATTACHMENT 1 WHITE MESA URANIUM MILL

Description of Sampling Event:	HEET FUR GROUND WATER	
Description of Sampling Event:		
Location (well name) TW 4-65	Sampler Name and initials Charles Ordin + Ryan Palmer	<u>_</u>
Date and Time for Purging 8-15-07 ar		
Well Purging Equip Used:pump orbaile	Well Pump (if other than Bennet) Continuents furnpris	
Sampling Event_chloroFoew	Prev. Well Sampled in Sampling Event	
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0	
Specific ConductanceuMHOS/cm	Well Depth_N/A	
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)	
	pH of Water (avg)	
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity	
Weather Cond. Cloudy & HoT Ext'l A	Amb. Temp.(prior to sampling event)	}
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	
Turbidity	Turbidity	
Time: Gal. Purged	Time: Gal. Purged	
Conductance	Conductance	
pH	pH	
Temperature	Temperature	
Redox Potential (Eh)	Redox Potential (Eh)	,.

Duplicate of TW4-20

Mill – Groundwater Discharge Permit

Date: 11.17.06 Revision: 1

Groundwater Monitoring
Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	Turbidity					
Volume of Water Purged When Field Paramete	ers are Measured					
Pumping Rate Calculation						
Flow Rate (Q), in gpm. S/60 = =	Time to evacuate two casing volumes (2V) $T = 2V/Q = \underline{\hspace{1cm}}$					
Number of casing volumes evacuated (if other t	han two)					
If well evacuated to dryness, number of gallons evacuated						
Name of Certified Analytical Laboratory if Other	er Than Energy Labs					

Type of Sample	Sample Taken (circle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative Added (circle)
VOCs Nutrients	Ø N	3x40 ml		HCL ON
Heavy Metals	Y N	100 ml 250 ml	Y (N) Y N	H ₂ SO ₄ (Y) N HNO ₃ Y N
All Other Non- Radiologics	YN	250 ml	YN	No Preservative Added
Gross Alpha	Y N	1,000 ml	Y N	H ₂ SO ₄ Y N
Other (specify)	Y N	Sample volume	Y N	YN
Tangganic chloeide	Y		N	If a preservative is used, Specify Type and Quantity of Preservative:

Comments AprilED ON SITE AT Sampling Took place at left Sist at	Chaeles 6. & Ryan A) present
left Site at		
Duplicate of	TW4-20	

Mill – Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Date: 2.25.07 Revision: 2

Page 40 of 41

WHITE MESA URANIUM MILL

Description of Sampling Event:	QUARTER CHIOPOFORM
	Sampler Name and initials Charles Orum + Ryan Palmere.
_	nd Sampling (if different)
Well Purging Equip Used:baile	r Well Pump (if other than Bennet)
Sampling Event chlorofor w	Prev. Well Sampled in Sampling Event
pH Buffer 7.0 7.0	pH Buffer 4.0 4.0
Specific ConductanceuMHOS/cm	Well Depth
Depth to Water Before Purging	Casing Volume (V) 4" Well:(.653h) 3" Well:(.367h)
Conductance (avg)	pH of Water (avg)
Well Water Temp. (avg)	Redox Potential (Eh) Turbidity
Weather Cond. Cloudy & Hot Ext'l A	Amb. Temp.(prior to sampling event)
Time: 1357 Gal. Purged 10/14	Time: Gal. Purged
Conductance 4 3316	Conductance
рн 7.94	рН
Temperature 20.18	Temperature
Redox Potential (Eh) /65	Redox Potential (Eh)
Turbidity 3.17	Turbidity
Fime: Gal. Purged	Time: Gal. Purged
Conductance	Conductance
ъН	рН
Temperature	Temperature
Dedox Dotential (Fib.)	Paday Patential (Fh)

Duplicate of 1004-15

Mill – Groundwater Discharge Permit Groundwater Monitoring

Date: 11.17.06 Revision: 1

Quality Assurance Plan (QAP)

Page 41 of 41

Turbidity	····		Turbidity_			
Volume of Water Purge	d When	Field l	Parameters are Meast	ired	N-W-	
Pumping Rate Calculati	<u>on</u>					
Flow Rate (Q), in gpm. S/60 = =					asing volumes (2V)	_
Number of casing volun	ies evac	uated (if other than two)			
If well evacuated to dry	iess, nui	nber of	gallons evacuated_			,
Name of Certified Analy	tical La	borato	ry if Other Than Ener	gy Labs		
Type of Sample		iple ken cle)	Sample Volume (indicate if other than as specified below)	Filtered (circle)	Preservative (circle)	Added .
•						
VOCs	(2)	N	3x40 ml	Ý N		Y) N
Nutrients	(Y)	N	100 ml	Y (N)		y) N
Heavy Metals	Y	N	250 ml	YN	HNO ₃	YN
All Other Non- Radiologics	Y	N	250 ml	Y N	No Preservativ	e Added
Gross Alpha	Y	N	1,000 ml	Y N	H ₂ SO ₄	YN
Other (specify)	Y	N	Sample volume	Y N	YN	
Tonganic chloride	Y			N	If a preservativ Specify Type a Quantity of Pre	nđ

Comments AllivED ON SITE AT Sampling Took place at left list at	Charles 6. & Ryan P. present
Sampling Took place at	
left site at	
Duplicate 764-15	

MM Ha	. 622	.55	· · · · · · · · · · · · · · · · · · ·		ing and the companies of the companies o
/		.,**# 2	epth to V	Vater	
Date	Time	Well	Depth		
7/02/07					
	10:24	mw-4	76.52	Flow	4.3 am
·		<i>,</i> ,		Meter	4.3 gm 0034760
			·		
			1/11/10		
	1031	TW-4-15	rento	Flow	4.6 spm 0019590
		*****		Meter	145100
	1220	T.11.10	$CR \Omega \Omega$	Fland	
	1320	TW 4-19	58.22	Flow	07021C0
				Meter	0703150
	1035	TW 4-70	66,20	Flow	6.5. 8 pm
				Meter	65. gpm 026 4960
·					

mm Hs 620.27

D-4-	Depth to Water					
Date	Time	Well	Depth			
7/09/07						
	1033	MW-4	1828	Flow	4.2 gpm	
				Meter	4.2 gpm 004 1900	
	1046	TW4-15	unable to check dopth	Flow	5.3gpm	
				Meter	0024180	
	1051	TW 4-19	57.38	Flow	Waiting on new Grund fos	
				Meter		
	1090	TW4-20	65.50	Flow	6.5gm	
				Meter	6.5 _{spn} 6270430	
-						
				-		

Date_7	-16-07	mmHg <u>62</u>	1.79	
<u>Time</u>	<u>Well</u>	<u>Depth</u>	<u>Comments</u>	
0827	Mw-4	75.20	Flow <u>4.3 gpm</u> Meter <u>/)048890</u>	
<u>6832</u>	TW 4-15	LWAB/E	Flow 5.5 gpm Meter 0029940	
6910	TW 4-19	57.02	Flow [WABLE] Meter_0703750	
<u>683.9</u>	TW 4-20	83.81	Flow_6.6_gpm Meter_02.757/0	
glesser fill hill film besser selvede selver en		 		
			W. W	

Date <u> </u>	-23-07	mmHg	
<u>Time</u>	<u>Well</u>	<u>Depth</u>	Comments
1340	mw-4	77.25	Flow 4,3 ₅ pm Meter 0056360
1303	TW4-15	Unable	Flow
1246	TW4-19	70.30	Flow 35 gpm (17th and Storted. Meter 0731430
<u>1253</u>	TW4-20	79.58	Flow6_lgpm Meter_0281240

<u> </u>		**************************************	
• • • • • • • • • • • • • • • • • • •			

495.3 mm Hg

D-4-	Depth to Water					
Date	Time	Well	Depth			
17-13-17	08:16	mw-4	75.47			
		TW 4-A	Rulled.	Flow		
	1819	TW 4-1	65.36	Meter		
	0805	TW4-2	71.89			
	0753	TW 4-3	49.19			
	0838	TW 4-4	66.59	Flow		
	0759	TW 4-5	53.60	Meter		
	0834	TW 4-6	74.50			
	0812	TW-4-7	71.17	-		
	0822	TW 4-8	70.96	Flow		
	0756	TW 4-9	52.05	Meter		
	0749	TW 4-16	55.57			
	0825	TW 4-11	65.90			
	0846	TW 4-12	37.80	Flow		
	0848	TW 4-13	54.87	Meter		
	0852	TW 4-14	91.02			
		TW 4-15	Can't check			
	0930	TW 4-16	66.33			
,	0935	TW 4-17				
	0737	TW 4-18	54.08			
	1003	TW 4-19	57.31			
	0951	TW 4-26				
	0733	TW 4-21				
	0948	TW 4-22	71.55			
	0830	TW 4-23	16221			

0744 TW 4-24 57.70 0730 TW 4-25 43.22

		121 742	
Date 7-30-07		mmHg 621.792	
<u>Time</u>	<u>Well</u>	<u>Depth</u>	Comments
0850	Mw-4	75.02	Flow <u>4.4 GPM</u> Meter <u>6063340</u>
0856	MW4-15		Flow_5.4 GPM Meter_0040450
0912	mw4-19	76.55	Flow_3_2_GAM Meter_0762380
0902	MW4-20	65.11	Flow_ 6.3 GPM Meter_0286150
		······································	
		900	
***************************************		Washington and the state of the	
		4.44	
***		<u> </u>	

Date 8/6/07		mmHg 621.79	
Time 1122	Well MW-4	Depth 75.41	Comments
			Flow
1131	TW4-15	unable to sat	Flow <i>5.4_{5pm}</i> Meter_ <i>0</i> 045710
			Meter <u>00 9 5 7 10</u>
0953	TW4-19	71.78	Flow 4.3gpm Meter 0794370
1135	TW4-20	65.73	Flow_6,4gpm Meter_0291190

729070

Date 8-13-07		mmHg 625.602	
<u>Time</u>	<u>Well</u> `	<u>Depth</u>	Comments
0835	MW4	75.13	Flow <u>46 GPM</u> Meter <u>0077790</u>
	The state of the s		
0842	TW4-15		Flow 5.7 GPM Meter 0050730
<u>/615</u>	TM4-19	72.42	Flow 3.3 GPM Meter 0826830
0820	TW4-20	65.93	Flow_ <i>6.4 GPm</i> Meter_ <i>0 296000</i>
The state of the s	**************************************		
		Week and the second sec	

WATER: 738755

Date <u>()8-20-07</u>		mmHg 621.792	
<u>Time</u>	<u>Well</u>	<u>Depth</u>	Comments
0841	MW - 4	74.83	Flow <u>4.3 ggm</u> Meter <u>(x84940</u>
0846	TW4-15	MA	Flow_ <i>S.6 Gpm</i> Meter_ <i>00.55</i> 86.0
0910	TW4-19	72.06	Flow 3.0 4pm Meter <u>0857660</u>
0851	TW4-20	65.85	Flow <i>6. </i> Meter_ <i>()300930</i>

WATER Meter: 748667

Date 8-24-07		mmHg 6/9, 506	
0752 0800 6743 0858 0852 0832 0840		Depth 64.94 12.73 31.80 52.61 47.16 79.33 Day 67.85	Comments Flow Meter Flow Meter
			Flow

Date 8-31-67		mmHg <u>624.84</u>		
<u>Time</u>	Well	<u>Depth</u>	<u>Comments</u>	
1652	MW 4	the Meter	Flow <u>4. 6</u> Meter_ <u>0096210</u>	
1056	MW 15	Broke So We are Trying to Fix and	Flow_ 5.2_ Meter_ <i>0</i> 063950	
1005	MW 19	Order A New CWE	Flow 3.0	
			Meter 0907640	
1059_	05 WM		Flow 6. Meter 0308580	

Date <u><i>69-64-67</i></u>		mmHg 621.792	
<u>Time</u>	Well	<u>Depth</u>	<u>Comments</u>
0918	MW-4	74.37	Flow 4.4 6/m Meter 6/00/70
0925	MW-15	N/A	Flow_ 5.6 Meter_0066750
0134	MW-20	76.51	Flow 6. 2 Meter 03/1320
1040	mw-19	71.96	Flow3. Meter_ <i>0925470</i>
-	A		
			·
		•••••••••••••••••••••••••••••••••••••	
		765779	

Date <u>9-10-67</u>		mmHg 623.316	
<u>Time</u>	<u>Well</u>	<u>Depth</u>	<u>Comments</u>
0828 	MN 4	74.76	Flow <u>4.3 G.pm</u> Meter <u>6/062/0</u>
0832	TW4-15	NA	Flow 5.4 Gem Meter <u>007/100</u>
0852	TN4-19	59.37	Flow_ 3. 9 G/m Meter_6925-470
0836	TW4-20	65.62	Flow_ <i>6.6 Gfm</i> Meter_ <i>0315420</i>
			>-
Application			
	INATED METER :	773909	

Date <u>9//7/07</u>		mmHg 618.74	
<u>Time</u>	Well Mw-4	<u>Depth</u> 74.56	Comments
			Flow
0848	TW4-15	N/A	Flow <u>5./ s.pm.</u> Meter <u>00763.80</u>
0918	TW4-19	5836	Flow 3.1 gpm Meter <u>0952000</u>
1023	TW4-20	68.49	

White Mesa Monitor Well 4 Depth Over Time

White Mesa Mill Temporary Well (4-1) Water Level Over Time

White Mesa Mill Temporary Well (4-2) Water Level Over Time

White Mesa Mill Temporary Well (4-3) Water Level Over Time

White Mesa Mill Temporary Well (4-4) Water Level Over Time

White Mesa Mill Temporary Well (4-5) Water Level Over Time

White Mesa Mill Temporary Well (4-6) Water Level Over Time

White Mesa Mill Temporary Well (4-7) Water Level Over Time

Date of Measurement

White Mesa Mill Temporary Well (4-8) Water Level Over Time

White Mesa Temporary Well (4-9) Over Time

White Mesa Temporary Well (4-10) Over Time

White Mesa Temporary Well (4-11) Over Time

White Mesa Temporary Well (4-12) Over Time

White Mesa Temporary Well (4-13) Over Time

White Mesa Temporary Well (4-14) Over Time

White Mesa Temporary Well (4-15) (MW-26) Over Time

White Mesa Temporary Well (4-16) Over Time

White Mesa Temporary Well (4-17) (MW-32) Over Time

White Mesa Temporary Well (4-18) Over Time

White Mesa Temporary Well (4-19) Over Time

White Mesa Temporary Well (4-20) Over Time

White Mesa Temporary Well (4-21) Over Time

White Mesa Temporary Well (4-22) Over Time

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,620.77	5,622.33	1.56				123.6
5,527.63				9/25/1979	94.70	93.14	
5,527.63				10/10/1979	94.70	93.14	
5,528.43				1/10/1980	93.90	92.34	
5,529.93				3/20/1980	92.40	90.84	
5,528.03	*			6/17/1980	94.30	92.74	
5,528.03				9/15/1980	94.30	92.74	
5,527.93				10/8/1980	94.40	92.84	
5,527.93				2/12/1981	94.40	92.84	
5,525.93				9/1/1984	96.40	94.84	
5,528.33				12/1/1984	94.00	92.44	
5,528.13				2/1/1985	94.20	92.64	
5,528.33				6/1/1985	94.00	92.44	
5,528.93				9/1/1985	93.40	91.84	
5,528.93				10/1/1985	93.40	91.84	
5,528.93				11/1/1985	93.40	91.84	
5,528.83				12/1/1985	93.50	91.94	•
5,512.33				3/1/1986	110.00	108.44	
5,528.91				6/19/1986	93.42	91.86	
5,528.83				9/1/1986	93.50	91.94	
5,529.16				12/1/1986	93.17	91.61	
5,526.66				2/20/1987	95.67	94.11	
5,529.16				4/28/1987	93.17	91.61	
5,529.08				8/14/1987	93.25	91.69	
5,529.00				11/20/1987	93.33	91.77	
5,528.75				1/26/1988	93.58	92.02	
5,528.91				6/1/1988	93.42	91.86	
5,528.25				8/23/1988	94.08	92.52	
5,529.00				11/2/1988	93.33	91.77	
5,528.33				3/9/1989	94.00	92.44	
5,529.10				6/21/1989	93.23	91.67	
5,529.06				9/1/1989	93.27	91.71	
5,529.21				11/15/1989	93.12	91.56	
5,529.22				2/16/1990	93.11	91.55	
5,529.43				5/8/1990	92.90	91.34	
5,529.40				8/7/1990	92.93	91.37	
5,529.53				11/13/1990	92.80	91.24	
5,529.86				2/27/1991	92.47	90.91	
5,529.91				5/21/1991	92.42	90.86	
5,529.77				8/27/1991	92.56	91.00	
5,529.79				12/3/1991	92.54	90.98	
5,530.13				3/17/1992	92.20	90.64	
5,529.85				6/11/1992	92.48	90.92	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,529.90				9/13/1992	92.43	90.87	- vv cu
5,529.92				12/9/1992	92.41	90.85	
5,530.25				3/24/1993	92.08	90.52	
5,530.20				6/8/1993	92.13	90.57	
5,530.19				9/22/1993	92.14	90.58	
5,529.75				12/14/1993	92.58	91.02	
5,530.98				3/24/1994	91.35	89.79	
5,531.35				6/15/1994	90.98	89.42	
5,531.62				8/18/1994	90.71	89.15	
5,532.58				12/13/1994	89.75	88.19	
5,533.42				3/16/1995	88.91	87.35	
5,534.70				6/27/1995	87.63	86.07	
5,535.44				9/20/1995	86.89	85.33	
5,537.16				12/11/1995	85.17	83.61	
5,538.37				3/28/1996	83.96	82.40	
5,539.10				6/7/1996	83.23	81.67	
5,539.13				9/16/1996	83.20	81.64	
5,542.29				3/20/1997	80.04	78.48	
5,551.58				4/7/1999	70.75	69.19	
5,552.08				5/11/1999	70.25	68.69	
5,552.83				7/6/1999	69.50	67.94	
5,553.47				9/28/1999	68.86	67.30	
5,554.63				1/3/2000	67.70	66.14	
5,555.13				4/4/2000	67.20	65.64	
5,555.73 5,556.03				5/2/2000	66.60	65.04	
5,555.73				5/11/2000	66.30	64.74	
5,555.98				5/15/2000	66.60	65.04	
5,555.98 5,556.05				5/25/2000	66.35	64.79	
5,556.18				6/9/2000	66.28	64.72	
5,556.05				6/16/2000	66.15	64.59	
5,556.15				6/26/2000	66.28	64.72	
5,556.18				7/6/2000	66.18	64.62	
5,556.17				7/13/2000	66.15	64.59	
5,556.26				7/18/2000	66.16	64.60	
5,556.35				7/25/2000	66.07	64.51	
5,556.38				8/2/2000 8/9/2000	65.98 65.05	64.42	
5,556.39				8/15/2000	65.95 65.04	64.39	
5,556.57				8/31/2000	65.94	64.38	
5,556.68				9/8/2000	65.76	64.20	
5,556.73				9/8/2000	65.65 65.60	64.09	
5,556.82				9/13/2000	65.51	64.04	
5,556.84				9/29/2000	65.49	63.95	
•				212212000	UJ.77	63.93	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,556.81				10/5/2000	65.52	63.96	
5,556.89				10/12/2000	65.44	63.88	
5,556.98				10/19/2000	65.35	63.79	
5,557.01				10/23/2000	65.32	63.76	
5,557.14				11/9/2000	65.19	63.63	
5,557.17				11/14/2000	65.16	63.60	
5,556.95				11/21/2000	65.38	63.82	
5,557.08				11/30/2000	65.25	63.69	
5,557.55				12/7/2000	64.78	63.22	
5,557.66				1/14/2001	64.67	63.11	
5,557.78				2/9/2001	64.55	62.99	
5,558.28				3/29/2001	64.05	62.49	
5,558.23				4/30/2001	64.10	62.54	
5,558.31				5/31/2001	64.02	62.46	
5,558.49				6/22/2001	63.84	62.28	
5,558.66				7/10/2001	63.67	62.11	
5,559.01				8/20/2001	63.32	61.76	
5,559.24				9/19/2001	63.09	61.53	
5,559.26				10/2/2001	63.07	61.51	
5,559.27				11/8/2001	63.06	61.50	
5,559.77				12/3/2001	62.56	61.00	
5,559.78				1/3/2002	62.55	60.99	
5,559.96				2/6/2002	62.37	60.81	
5,560.16				3/26/2002	62.17	60.61	
5,560.28				4/9/2002	62.05	60.49	
5,560.76				5/23/2002	61.57	60.01	
5,560.58				6/5/2002	61.75	60.19	
5,560.43				7/8/2002	61.90	60.34	
5,560.44				8/23/2002	61.89	60.33	
5,560.71				9/11/2002	61.62	60.06	
5,560.89				10/23/2002	61.44	59.88	
5,557.86				11/22/2002	64.47	62.91	
5,561.10				12/3/2002	61.23	59.67	
5,561.39				1/9/2003	60.94	59.38	
5,561.41				2/12/2003	60.92	59.36	
5,561.93				3/26/2003	60.40	58.84	
5,561.85				4/2/2003	60.48	58.92	
5,536.62				5/1/2003	85.71	84.15	
5,528.56				6/9/2003	93.77	92.21	
5,535.28				7/7/2003	87.05	85.49	
5,534.44				8/4/2003	87.89	86.33	
5,537.10				9/11/2003	85.23	83.67	
5,539.96				10/2/2003	82.37	80.81	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,535.91				11/7/2003	86.42	84.86	******
5,550.70				12/3/2003	71.63	70.07	
5,557.58				1/15/2004	64.75	63.19	
5,558.80				2/10/2004	63.53	61.97	
5,560.08				3/28/2004	62.25	60.69	
5,560.55				4/12/2004	61.78	60.22	
5,561.06				5/13/2004	61.27	59.71	
5,561.48				6/18/2004	60.85	59.29	
5,561.86				7/28/2004	60.47	58.91	
5,529.17				8/30/2004	93.16	91.60	
5,536.55				9/16/2004	85.78	84.22	
5,529.00				10/11/2004	93.33	91.77	
5,541.55				11/16/2004	80.78	79.22	
5,541.12				12/22/2004	81.21	79.65	
5,540.59				1/18/2005	81.74	80.18	
5,542.85				2/28/2005	79.48	77.92	
5,537.91				3/15/2005	84.42	82.86	
5,548.67				4/26/2005	73.66	72.10	
5,549.53				5/24/2005	72.80	71.24	
5,544.36				6/30/2005	77.97	76.41	
5,545.16				07/29/05	77.17	75.61	
5,544.67				09/12/05	77.66	76.10	
5,541.28				09/27/05	81.05	79.49	
5,536.96				12/7/2005	85.37	83.81	
5,546.49				3/8/2006	75.84	74.28	
5,546.15				6/13/2006	76.18	74.62	
5,545.15				7/18/2006	77.18	75.62	
5,545.91				11/17/206	76.42	74.86	
5,545.90				2/27/2007	76.43	74.87	
5,548.16				5/2/2007	74.17	72.61	
5,547.20				8/13/2007	75.13	73.57	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
Z	5,620.77	5,622.33	1.02				111.04
5,540.98				11/8/1999	81.35	80.33	
5,541.13				11/9/1999	81.20	80.18	
5,541.23				1/2/2000	81.10	80.08	
5,541.23				1/10/2000	81.10	80.08	
5,540.98				1/17/2000	81.35	80.33	
5,541.03				1/24/2000	81.30	80.28	
5,541.03				2/1/2000	81.30	80.28	
5,540.93				2/7/2000	81.40	80.38	
5,541.23				2/14/2000	81.10	80.08	
5,541.23				2/23/2000	81.10	80.08	
5,541.33				3/1/2000	81.00	79.98	
5,541.43				3/8/2000	80.90	79.88	
5,541.73				3/15/2000	80.60	79.58	
5,541.43				3/20/2000	80.90	79.88	
5,541.43				3/29/2000	80.90	79.88	•
5,541.18				4/4/2000	81.15	80.13	
5,540.93				4/13/2000	81.40	80.38	
5,541.23				4/21/2000	81.10	80.08	
5,541.43				4/28/2000	80.90	79.88	
5,541.33				5/1/2000	81.00	79.98	
5,541.63				5/11/2000	80.70	79.68	
5,541.33				5/15/2000	81.00	79.98	
5,541.63				5/25/2000	80.70	79.68	
5,541.63				6/9/2000	80.70	79.68	
5,541.65				6/16/2000	80.68	79.66	
5,541.63				6/26/2000	80.70	79.68	
5,541.85				7/6/2000	80.48	79.46	
5,541.79				7/13/2000	80.54	79.52	
5,541.91				7/18/2000	80.42	79.40	
5,542.17				7/27/2000	80.16	79.14	
5,542.31				8/2/2000	80.02	79.00	
5,542.43				8/9/2000	79.90	78.88	
5,542.41				8/15/2000	79.92	78.90	
5,542.08				8/31/2000	80.25	79.23	
5,542.93				9/1/2000	79.40	78.38	
5,542.87				9/8/2000	79.46	78.44	
5,543.09				9/13/2000	79.24	78.22	
5,543.25				9/20/2000	79.08	78.06	
5,543.44				10/5/2000	78.89	77.87	
5,544.08				11/9/2000	78.25	77.23	
5,544.49				12/6/2000	77.84	76.82	

	White Mesa Will - Well	T AA 44-T	
5,546.14	1/14/2001	76.19	75.17
5,547.44	2/2/2001	74.89	73.87
5,548.71	3/29/2001	73.62	72.60
5,549.20	4/30/2001	73.13	72.11
5,549.64	5/31/2001	72.69	71.67
5,549.94	6/22/2001	72.39	71.37
5,550.25	7/10/2001	72.08	71.06
5,550.93	8/10/2001	71.40	70.38
5,551.34	9/19/2001	70.99	69.97
5,551.59	10/2/2001	70.74	69.72
5,549.64	5/31/2001	72.69	71.67
5,549.94	6/21/2001	72.39	71.37
5,550.25	7/10/2001	72.08	71.06
5,550.93	8/20/2001	71.40	70.38
5,551.34	9/19/2001	70.99	69.97
5,551.59	10/2/2001	70.74	69.72
5,551.87	11/8/2001	70.46	69.44
5,552.40	12/3/2001	69.93	68.91
5,552.62	1/3/2002	69.71	68.69
5,553.12	2/6/2002	69.21	68.19
5,553.75	3/26/2002	68.58	67.56
5,553.97	4/9/2002	68.36	67.34
5,554.56	5/23/2002	67.77	66.75
5,554.54	6/5/2002	67.79	66.77
5,554.83	7/8/2002	67.50	66.48
5,555.29	8/23/2002	67.04	66.02
5,555.54	9/11/2002	66.79	65.77
5,555.94	10/23/2002	66.39	65.37
5,556.02	11/22/2002	66.31	65.29
5,556.23	12/3/2002	66.10	65.08
5,556.49	1/9/2003	65.84	64.82
5,556.67	2/12/2003	65.66	64.64
5,557.15	3/26/2003	65.18	64.16
5,557.23	4/2/2003	65.10	64.08
5,556.07	5/1/2003	66.26	65.24
5,554.28	6/9/2003	68.05	67.03
5,553.84	7/7/2003	68.49	67.47
5,553.39	8/4/2003	68.94	67.92
5,553.06	9/11/2003	69.27	68.25
5,553.33	10/2/2003	69.00	67.98
5,553.25	11/7/2003	69.08	68.06
5,553.82	12/3/2003	68.51	67.49
5,555.61	1/15/2004	66.72	65.70
5,556.32	2/10/2004	66.01	64.99
5,557.38	3/28/2004	64.95	63.93
5,557.79	4/12/2004	64.54	63.52
5,558.35	5/13/2004	63.98	62.96
5,560.03	6/18/2004	62.30	61.28

5,560.36	7/28/2004	61.97	60.95
5,557.96	8/30/2004	64.37	63.35
5,557.24	9/16/2004	65.09	64.07
5,556.28	10/11/2004	66.05	65.03
5,556.17	11/16/2004	66.16	65.14
5,556.21	12/22/2004	66.12	65.10
5,555.82	1/18/2005	66.51	65.49
5,555.96	2/28/2005	66.37	65.35
5,556.01	3/15/2005	66.32	65.30
5,556.05	4/26/2005	66.28	65.26
5,556.00	5/24/2005	66.33	65.31
5,555.97	6/30/2005	66.36	65.34
5,555.90	7/29/05	66.43	65.41
5,556.22	9/12/05	66.11	65.09
5,556.25	12/7/2005	66.08	65.06
5,556.71	3/8/2006	65.62	64.60
5,556.98	* 6/14/2006	65.35	64.33
5,560.95	7/18/2006	61.38	60.36
5,557.07	11/7/2006	65.26	64.24
5,558.10	2/27/2007	64.23	63.21
5,557.82	5/2/2007	64.51	63.49
5,557.82	8/14/2007	64.51	63.49

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,623.10	5,625.00	1.90				121.125
5,548.85				11/8/1999	76.15	74.25	
5,548.85				11/9/1999	76.15	74.25	
5,548.60				1/2/2000	76.40	74.50	
5,548.80				1/10/2000	76.20	74.30	
5,548.60				1/17/2000	76.40	74.50	
5,549.00				1/24/2000	76.00	74.10	
5,548.90				2/1/2000	76.10	74.20	
5,548.90				2/7/2000	76.10	74.20	
5,549.30				2/14/2000	75.70	73.80	
5,549.40				2/23/2000	75.60	73.70	
5,549.50				3/1/2000	75.50	73.60	
5,549.60				3/8/2000	75.40	73.50	
5,549.50				3/15/2000	75.50	73.60	
5,550.20				3/20/2000	74.80	72.90	
5,550.00				3/29/2000	75.00	73.10	
5,549.70				4/4/2000	75.30	73.40	•
5,549.80				4/13/2000	75.20	73.30	
5,550.00				4/21/2000	75.00	73.10	
5,550.10				4/28/2000	74.90	73.00	
5,550.10				5/1/2000	74.90	73.00	
5,550.40 5,550.10				5/11/2000	74.60	72.70	
5,550.40				5/15/2000	74.90	73.00	
5,550.40				5/25/2000	74.60	72.70	
5,550.50				6/9/2000	74.60	72.70	
5,550.35				6/16/2000	74.50	72.60	
5,550.45				6/26/2000	74.65	72.75	
5,550.45				7/6/2000	74.55	72.65	
5,550.46				7/13/2000	74.55	72.65	
5,550.40				7/18/2000	74.54	72.64	
5,550.66				7/27/2000	74.39	72.49	
5,550.68				8/2/2000	74.34	72.44	
5,550.70				8/9/2000 8/15/2000	74.32	72.42	
5,550.82				8/31/2000	74.30	72.40	
5,551.15				9/8/2000	74.18	72.28	
5,551.25				9/8/2000	73.85 73.75	71.95	
5,551.32				9/13/2000	73.73 73.68	71.85	
5,546.11				10/5/2000	73.68 78.89	71.78 76.99	
5,546.75				11/9/2000	78.25		
5,547.16				12/6/2000	78.23 77.84	76.35 75.94	
5,552.46				1/26/2001	77.8 4 72.54	73.9 4 70.64	
5,552.48				2/2/2001	72.54	70.64	
•				-: -: 2001	12.52	10.02	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,551.38				3/29/2001	73.62	71.72	
5,551.87				4/30/2001	73.13	71.23	
5,552.31				5/31/2001	72.69	70.79	
5,552.61				6/21/2001	72.39	70.49	
5,552.92				7/10/2001	72.08	70.18	
5,553.60				8/20/2001	71.40	69.50	
5,554.01				9/19/2001	70.99	69.09	
5,554.26				10/2/2001	70.74	68.84	
5,554.42				11/08/01	70.58	68.68	
5,555.07				12/03/01	69.93	68.03	
5,555.02				01/03/02	69.98	68.08	
5,555.19				02/06/02	69.81	67.91	
5,555.43				03/26/02	69.57	67.67	
5,555.67				04/09/02	69.33	67.43	
5,556.01				05/23/02	68.99	67.09	
5,556.07				06/05/02	68.93	67.03	
5,556.19				07/08/02	68.81	66.91	
5,556.32				08/23/02	68.68	66.78	
5,556.53				09/11/02	68.47	66.57	
5,557.00				10/23/02	68.00	66.10	
5,556.70				11/22/02	68.30	66.40	
5,557.29				12/03/02	67.71	65.81	
5,557.48				01/09/03	67.52	65.62	
5,557.63				02/12/03	67.37	65.47	
5,558.11				03/26/03	66.89	64.99	
5,558.15				04/02/03	66.85	64.95	
5,553.99				05/01/03	71.01	69.11	
5,549.26				06/09/03	75.74	73.84	
5,548.42				07/07/03	76.58	74.68	
5,548.03				08/04/03	76.97	75.07	
5,547.50				09/11/03	77.50	75.60	
5,547.96				10/02/03	77.04	75.14	
5,547.80				11/07/03	77.20	75.30	
5,548.57				12/03/03	76.43	74.53	
5,554.28				01/15/04	70.72	68.82	
5,555.74 5,557.18				02/10/04	69.26	67.36	
5,557.18 5,557.77				03/28/04	67.82	65.92	
5,557.77 5,559.35				04/12/04	67.23	65.33	
5,558.35				05/13/04	66.65	64.75	
5,558.47				06/18/04	66.53	64.63	
5,559.28 5,554.54				07/28/04	65.72	63.82	
5,554.54 5,552.25				08/30/04	70.46	68.56	
5,552.25				09/16/04	72.75	70.85	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw,MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,549.93				10/11/04	75.07	73.17	
5,550.17				11/16/04	74.83	72.93	
5,550.65				12/22/04	74.35	72.45	
5,550.23				01/18/05	74.77	72.87	
5,550.37				02/28/05	74.63	72.73	
5,550.41				03/15/05	74.59	72.69	
5,550.46				04/26/05	74.54	72.64	
5,550.60				05/24/05	74.40	72.50	
5,550.49				06/30/05	74.51	72.61	
5,550.39				07/29/05	74.61	72.71	
5,550.61				09/12/05	74.39	72.49	
5,550.57				12/07/05	74.43	72.53	
5,551.58				03/08/06	73.42	71.52	
5,551.70			*	06/14/06	73.3	71.40	
5,550.80				07/18/06	74.20	72.30	
5550.80				11/07/06	74.20	72.30	
5553.17				2/27/2007	71.83	69.93	
5,552.34				5/2/2007	72.66	70.76	
5,552.30				8/14/2007	72.7	70.80	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02		(==::===)	(22.0.22)	141
5,565.78				11/29/1999	66.45	65.43	
5,566.93				1/2/2000	65.30	64.28	
5,567.03				1/10/2000	65.20	64.18	
5,566.83				1/17/2000	65.40	64.38	
5,567.13				1/24/2000	65.10	64.08	
5,567.33				2/1/2000	64.90	63.88	
5,567.13				2/7/2000	65.10	64.08	
5,567.43				2/14/2000	64.80	63.78	
5,567.63				2/23/2000	64.60	63.58	
5,567.73				3/1/2000	64.50	63.48	
5,567.83				3/8/2000	64.40	63.38	
5,567.70				3/15/2000	64.53	63.51	
5,568.03				3/20/2000	64.20	63.18	
5,567.93				3/29/2000	64.30	63.28	
5,567.63				4/4/2000	64.60	63.58	
5,567.83				4/13/2000	64.40	63.38	
5,568.03				4/21/2000	64.20	63.18	
5,568.23				4/28/2000	64.00	62.98	
5,568.13				5/1/2000	64.10	63.08	
5,568.53				5/11/2000	63.70	62.68	
5,568.23 5,568.53				5/15/2000	64.00	62.98	
5,568.61				5/25/2000	63.70	62.68	
5,568.69				6/9/2000	63.62	62.60	
5,568.45				6/16/2000 6/26/2000	63.54	62.52	
5,568.61				7/6/2000	63.78 63.62	62.76 62.60	
5,568.61				7/6/2000	63.62	62.60	
5,568.49				7/0/2000	63.74	62.72	
5,568.55				7/18/2000	63.68	62.66	
5,568.65				7/27/2000	63.58	62.56	
5,568.73				8/2/2000	63.50	62.48	
5,568.77				8/9/2000	63.46	62.44	
5,568.76				8/16/2000	63.47	62.45	
5,568.95				8/31/2000	63.28	62.26	
5,568.49				9/8/2000	63.74	62.72	
5,568.67				9/13/2000	63.56	62.54	
5,568.96				9/20/2000	63.27	62.25	
5,568.93				10/5/2000	63.3	62.28	
5,569.34				11/9/2000	62.89	61.87	
5,568.79				12/6/2000	63.44	62.42	
5,569.11				1/3/2001	63.12	62.10	
5,569.75				2/9/2001	62.48	61.46	

	white Mesa Milli - Well 1 V	N4-3	
5,570.34	3/28/2001	61.89	60.87
5,570.61	4/30/2001	61.62	60.60
5,570.70	5/31/2001	61.53	60.51
5,570.88	6/21/2001	61.35	60.33
5,571.02	7/10/2001	61.21	60.19
5,571.70	8/20/2001	60.53	59.51
5,572.12	9/19/2001	60.11	59.09
5,572.08	10/2/2001	60.15	59.13
5,570.70	5/31/2001	61.53	60.51
5,570.88	6/21/2001	61.35	60.33
5,571.02	7/10/2001	61.21	60.19
5,571.70	8/20/2001	60.53	59.51
5,572.12	9/19/2001	60.11	59.09
5,572.08	10/2/2001	60.15	59.13
5,572.78	11/8/2001	59.45	58.43
5,573.27	12/3/2001	58.96	57.94
5,573.47	1/3/2002	58.76	57.74
5,573.93	2/6/2002	58.30	57.28
5,574.75	3/26/2002	57.48	56.46
5,574.26	4/9/2002	57.97	56.95
5,575.39	5/23/2002	56.84	55.82
5,574.84	6/5/2002	57.39	56.37
5,575.33	7/8/2002	56.90	55.88
5,575.79	8/23/2002	56.44	55.42
5,576.08	9/11/2002	56.15	55.13
5,576.30	10/23/2002	55.93	54.91
5,576.35	11/22/2002	55.88	54.86
5,576.54	12/3/2002	55.69	54.67
5,576.96	1/9/2003	55.27	54.25
5,577.11	2/12/2003	55.12	54.10
5,577.61	3/26/2003	54.62	53.60
5,572.80	4/2/2003	59.43	58.41
5,577.89	5/1/2003	54.34	53.32
5,577.91	6/9/2003	54.32	53.30
5,577.53	7/7/2003	54.70	53.68
5,577.50	8/4/2003	54.73	53.71
5,577.71	9/11/2003	54.52	53.50
5,577.31	10/2/2003	54.92	53.90
5,577.33	11/7/2003	54.90	53.88
5,577.34	12/3/2003	54.89	53.87
5,578.24	1/15/2004	53.99	52.97
5,578.38	2/10/2004	53.85	52.83
5,578.69	3/28/2004	53.54	52.52
5,579.15	4/12/2004	53.08	52.06
5,579.47	5/13/2004	52.76	51.74
5,579.53	6/18/2004	52.70	51.68
5,580.17	7/28/2004	52.06	51.04
5,580.20	8/30/2004	52.03	51.01

5,580.26	9/16/2004	51.97	50.95
5,580.12	10/11/2004	52.11	51.09
5,579.93	11/16/2004	52.30	51.28
5,580.07	12/22/2004	52.16	51.14
5,579.80	1/18/2005	52.43	51.41
5,580.35	2/28/2005	51.88	50.86
5,580.57	3/15/2005	51.66	50.64
5,580.86	4/26/2005	51.37	50.35
5,581.20	5/24/2005	51.03	50.01
5,581.51	6/30/2005	50.72	49.70
5,581.55	07/29/05	50.68	49.66
5,581.68	09/12/05	50.55	49.53
5,581.83	12/7/2005	50.4	49.38
5,564.92	3/8/2006	67.31	66.29
5,582.73	6/13/2006	49.50	48.48
5,582.33	7/18/2006	49.90	48.88
5,582.75	11/7/2006	49.48	48.46
5583.35	2/27/2007	48.88	47.86
5,559.57	5/2/2007	72.66	71.64
5,583.29	8/14/2007	48.94	47.92

		Measuring	Length		Total or Measured	Total	Total
Water	Land	Point	Of		Depth to	Depth to	Depth
Elevation	Surface	Elevation	Riser	Date Of	Water	Water	Ôf
<u>(z)</u>	(LSD)	(MP)	<u>(L)</u>	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,512.145				5/25/2000	101.34	100.16	
5,518.985				6/9/2000	94.50	93.32	
5,512.145				6/16/2000	101.34	100.16	
5,517.465				6/26/2000	96.02	94.84	
5,520.145				7/6/2000	93.34	92.16	
5,521.435				7/13/2000	92.05	90.87	
5,522.005				7/18/2000	91.48	90.30	
5,522.945				7/27/2000	90.54	89.36	
5,523.485				8/2/2000	90.00	88.82	
5,523.845				8/9/2000	89.64	88.46	
5,523.885				8/15/2000	89.60	88.42	
5,524.555				9/1/2000	88.93	87.75	
5,513.235				9/8/2000	100.25	99.07	
5,516.665				9/13/2000	96.82	95.64	
5,519.085				9/20/2000	94.40	93.22	
5,522.165				10/5/2000	91.32	90.14	
5,524.665				11/9/2000	88.82	87.64	
5,518.545				12/6/2000	94.94	93.76	
5,527.695				1/3/2001	85.79	84.61	
5,529.085				2/9/2001	84.40	83.22	
5,529.535				3/27/2001	83.95	82.77	
5,530.235				4/30/2001	83.25	82.07	
5,530.265				5/31/2001	83.22	82.04	
5,534.405				6/22/2001	79.08	77.90	
5,533.145				7/10/2001	80.34	79.16	
5,534.035				8/20/2001	79.45	78.27	
5,534.465				9/19/2001	79.02	77.84	
5,533.285				10/2/2001	80.20	79.02	
5,530.265				5/31/2001	83.22	82.04	
5,534.405				6/21/2001	79.08	77.90	
5,533.145				7/10/2001	80.34	79.16	
5,534.035				8/20/2001	79.45	78.27	
5,534.465				9/19/2001	79.02	77.84	
5,533.285				10/2/2001	80.20	79.02	
5,533.865				11/8/2001	79.62	78.44	
5,534.275				12/3/2001	79.21	78.03	
5,534.715				1/3/2002	78.77	77.59	
5,535.435				2/6/2002	78.05	76.87	
5,536.445				3/26/2002	77.04	75.86	
5,536.405				4/9/2002	77.08	75.90	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,537.335	-			5/23/2002	76.15	74.97	******
5,537.325				6/5/2002	76.16	74.98	
5,537.975				7/8/2002	75.51	74.33	
5,538.825				8/23/2002	74.66	73.48	
5,539.275				9/11/2002	74.21	73.03	
5,539.765				10/23/2002	73.72	72.54	
5,540.205				11/22/2002	73.28	72.10	
5,540.295				12/3/2002	73.19	72.01	
5,540.795				1/9/2003	72.69	71.51	
5,540.985				2/12/2003	72.50	71.32	
5,541.675				3/26/2003	71.81	70.63	
5,541.765				4/2/2003	71.72	70.54	
5,541.885				5/1/2003	71.60	70.42	
5,542.025				6/9/2003	71.46	70.28	
5,541.925				7/7/2003	71.56	70.38	
5,541.885				8/4/2003	71.60	70.42	
5,541.825				9/11/2003	71.66	70.48	
5,541.885				10/2/2003	71.60	70.42	
5,541.995				11/7/2003	71.49	70.31	
5,542.005				12/3/2003	71.48	70.30	
5,542.555				1/15/2004	70.93	69.75	
5,542.705				2/10/2004	70.78	69.60	
5,543.225				3/28/2004	70.26	69.08	
5,543.555				4/12/2004	69.93	68.75	
5,543.865				5/13/2004	69.62	68.44	
5,543.915 5,544.655				6/18/2004	69.57	68.39	
5,544.795				7/28/2004	68.83	67.65	
5,544.795 5,544.845	-			8/30/2004	68.69	67.51	
5,544.705				9/16/2004	68.64	67.46	
5,544.525				10/11/2004	68.78	67.60	
5,544.625				11/16/2004	68.96	67.78	
5,544.305	÷			12/22/2004	68.86	67.68	
5,544.585				1/18/2005	69.18	68.00	
5,544.685				2/28/2005	68.90	67.72	
5,544.675				3/15/2005	68.80	67.62	
5,544.785				4/26/2005	68.81	67.63	
5,544.795				5/24/2005	68.70	67.52	
5,544.775				6/30/2005	68.69	67.51	
5,545.005				7/29/2005	68.71	67.53	
5,545.225				9/12/2005	68.48	67.30	
5,545.735				12/7/2005	68.26	67.08	
5,545.785				3/8/2006	67.75	66.57	
-,				6/14/2006	67.70	66.52	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,545.855				7/18/2006	67.63	66.45	
5,545.805				11/7/2006	67.68	66.50	
5546.675				2/27/2007	66.81	65.63	
5,546.535				5/2/2007	66.95	65.77	
5,547.155				8/15/2007	66.33	65.15	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,638.75	5,640.70	1.95				121.75
5,579.30				1/2/00	61.40	59.45	
5,579.60				1/10/00	61.10	59.15	
5,579.35				1/17/00	61.35	59.40	
5,579.60				1/24/00	61.10	59.15	
5,579.50				2/1/00	61.20	59.25	
5,579.50				2/7/00	61.20	59.25	
5,579.90				2/14/00	60.80	58.85	
5,579.90				2/23/00	60.80	58.85	
5,580.20				3/1/00	60.50	58.55	
5,580.00				3/8/00	60.70	58.75	
5,580.04				3/15/00	60.66	58.71	
5,580.70				3/20/00	60.00	58.05	
5,580.30				3/29/00	60.40	58.45	
5,580.00				4/4/00	60.70	58.75	
5,580.20 5,580.40				4/13/00	60.50	58.55	
5,580.50				4/21/00	60.30	58.35	
5,580.50				4/28/00	60.20	58.25	
5,580.90				5/1/00	60.20	58.25	
5,580.50				5/11/00	59.80	57.85	
5,580.75				5/15/00 5/25/00	60.20	58.25	
5,580.80				6/9/00	59.95 59.90	58.00 57.05	
5,580.92				6/16/00	59.78	57.95 57.83	
5,580.80				6/26/00	59.78	57.85 57.95	
5,580.90				7/6/00	59.80	57.85	
5,581.05				7/13/00	59.65	57.83 57.70	
5,580.90				7/18/00	59.80	57.85	
5,581.05				7/27/00	59.65	57.70	
5,581.06				8/2/00	59.64	57.69	
5,581.08				8/9/00	59.62	57.67	
5,581.07				8/16/00	59.63	57.68	
5,581.25				8/31/00	59.45	57.50	
5,581.32				9/8/00	59.38	57.43	
5,581.34				9/13/00	59.36	57.41	
5,581.41				9/20/00	59.29	57.34	
5,581.37				10/5/00	59.33	57.38	
5,581.66				11/9/00	59.04	57.09	
5,581.63				12/6/00	59.07	57.12	
5,581.92				1/3/01	58.78	56.83	
5,582.20				2/9/01	58.50	56.55	
5,582.54				3/28/01	58.16	56.21	
5,582.72				4/30/01	57.98	56.03	

					Total or		
Water	Y 3	Measuring	Length		Measured	_ Total	Total
Water Elevation	Land Surface	Point Elevation	Of Riser	D-4- Of	Depth to	Depth to	Depth
(z)	(LSD)	(MP)	(L)	Date Of Monitoring	Water (blw.MP)	Water	Of Well
5,582.72	(202)	(1/11)	(12)	5/31/01	57.98	(blw.LSD) 56.03	Well
5,582.81				6/22/01	57.89	55.94	
5,582.92				7/10/01	57.78	55.83	
5,583.17				8/20/01	57.73	55.58	
5,583.28				9/19/01	57.42	55.47	
5,583.36				10/2/01	57.34	55.39	
5,582.72				5/31/01	57.98	56.03	
5,582.81				6/21/01	57.89	55.94	
5,582.92				7/10/01	57.78	55.83	
5,583.17				8/20/01	57.53	55.58	
5,583.28				9/19/01	57.42	55.47	
5,583.36				10/2/01	57.34	55.39	
5,583.49				11/8/01	57.21	55.26	
5,583.84				12/3/01	56.86	54.91	
5,583.79				1/3/02	56.91	54.96	
5,583.96				2/6/02	56.74	54.79	
5,584.39				3/26/02	56.31	54.36	
5,584.12				4/9/02	56.58	54.63	
5,584.55				5/23/02	56.15	54.20	
5,584.42				6/5/02	56.28	54.33	
5,583.65				7/8/02	57.05	55.10	
5,584.90				8/23/02	55.80	53.85	
5,585.02				9/11/02	55.68	53.73	
5,585.20				10/23/02	55.50	53.55	
5,585.15				11/22/02	55.55	53.60	
5,585.42				12/3/02	55.28	53.33	
5,585.65				1/9/03	55.05	53.10	
5,585.65				2/12/03	55.05	53.10	
5,585.92				3/26/03	54.78	52.83	
5,586.22				4/2/03	54.48	52.53	
5,586.01				5/1/03	54.69	52.74	
5,584.81				6/9/03	55.89	53.94	
5,584.34				7/7/03	56.36	54.41	
5,584.40				8/4/03	56.30	54.35	
5,583.88				9/11/03	56.82	54.87	
5,583.57				10/2/03	57.13	55.18	
5,583.39				11/7/03	57.31	55.36	
5,583.97				12/3/03	56.73	54.78	
5,585.28				1/15/04	55.42	53.47	
5,585.50				2/10/04	55.20	53.25	
5,585.87				3/28/04	54.83	52.88	
5,586.20				4/12/04	54.50	52.55	
5,586.45				5/13/04	54.25	52.30	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,586.50				6/18/04	54.20	52.25	
5,587.13				7/28/04	53.57	51.62	
5,586.22				8/30/04	54.48	52.53	
5,585.69				9/16/04	55.01	53.06	
5,585.17				10/11/04	55.53	53.58	
5,584.64				11/16/04	56.06	54.11	
5,584.77				12/22/04	55.93	53.98	
5,584.65				1/18/05	56.05	54.10	
5,584.98				2/28/05	55.72	53.77	
5,585.15				3/15/05	55.55	53.60	
5,586.25				4/26/05	54.45	52.50	
5,586.79				5/24/05	53.91	51.96	
5,586.52				6/30/05	54.18	52.23	
5,586.03				7/29/05	54.67	52.72	
5,586.05				9/12/05	54.65	52.70	
5,585.80				12/7/05	54.90	52.95	
5,587.06				3/8/06	53.64	51.69	•
5,585.90				6/13/06	54.80	52.85	
5,585.32				7/18/06	55.38	53.43	
5,585.35				11/7/06	55.35	53.40	
5585.81				2/27/07	54.89	52.94	
5,585.20				5/2/07	55.50	53.55	
5,586.66				8/14/07	54.04	52.09	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,522.28				5/25/00	86.50	85.05	
5,521.51				6/9/00	87.27	85.82	
5,522.35				6/16/00	86.43	84.98	
5,522.14				6/26/00	86.64	85.19	
5,522.25				7/6/00	86.53	85.08	
5,522.13				7/13/00	86.65	85.20	
5,522.17				7/18/00	86.61	85.16	
5,522.26				7/25/00	86.52	85.07	
5,522.31				8/2/00	86.47	85.02	
5,522.33				8/9/00	86.45	85.00	
5,522.35				8/15/00	86.43	84.98	
5,522.40				8/31/00	86.38	84.93	
5,522.40				9/8/00	86.38	84.93	
5,522.45				9/13/00	86.33	84.88	
5,522.53				9/20/00	86.25	84.80	
5,522.39				10/5/00	86.39	84.94	•
5,522.42				11/9/00	86.36	84.91	
5,522.29				12/6/00	86.49	85.04	
5,522.63				1/3/01	86.15	84.70	
5,522.72				2/9/01	86.06	84.61	
5,522.90				3/26/01	85.88	84.43	
5,522.70				4/30/01	86.08	84.63	
5,522.89				5/31/01	85.89	84.44	
5,522.88				6/20/01	85.90	84.45	
5,522.96				7/10/01	85.82	84.37	
5,523.10				8/20/01	85.68	84.23	
5,523.23				9/19/01	85.55	84.10	
5,523.21				10/2/01	85.57	84.12	
5,522.89				5/31/01	85.89	84.44	
5,522.88				6/21/01	85.90	84.45	
5,522.96 5,523.10				7/10/01	85.82	84.37	
5,523.23				8/20/01	85.68	84.23	
5,523.21				9/19/01	85.55	84.10	
5,523.25				10/2/01	85.57	84.12	
5,523.46				11/8/01	85.53	84.08	
5,523.36				12/3/01	85.32	83.87	
5,523.50				1/3/02	85.42	83.97	
5,523.94				2/6/02	85.28	83.83	
5,523.75				3/26/02	84.84	83.39	
5,524.23				4/9/02	85.03	83.58	
5,523.98				5/23/02	84.55	83.10	
5,545.70				6/5/02	84.80	83.35	

5,524.31	7/8/02	84.47	83.02
5,524.36	8/23/02	84.42	82.97
5,524.49	9/11/02	84.29	82.84
5,524.71	10/23/02	84.07	82.62
5,524.60	11/22/02	84.18	82.73
5,524.94	12/3/02	83.84	82.39
5,525.10	1/9/03	83.68	82.23
5,525.15	2/12/03	83.63	82.18
5,525.35	3/26/03	83.43	81.98
5,525.68	4/2/03	83.10	81.65
5,525.74	5/1/03	83.04	81.59
5,525.98	6/9/03	82.80	81.35
5,526.04	7/7/03	82.74	81.29
5,526.07	8/4/03	82.71	81.26
5,526.42	9/11/03	82.36	80.91
5,526.30	10/2/03	82.48	81.03
5,526.41	11/7/03	82.37	80.92
5,526.46	12/3/03	82.32	80.87
5,526.83	1/15/04	81.95	80.50
5,526.81	2/10/04	81.97	80.52
5,527.14	3/28/04	81.64	80.19
5,527.39	4/12/04	81.39	79.94
5,527.64	5/13/04	81.14	79.69
5,527.70	6/18/04	81.08	79.63
5,528.16	7/28/04	80.62	79.17
5,528.30	8/30/04	80.48	79.03
5,528.52	9/16/04	80.26	78.81
5,528.71	10/11/04	80.07	78.62
5,528.74	11/16/04	80.04	78.59
5,529.20	12/22/04	79.58	78.13
5,528.92	1/18/05	79.86	78.41
5,529.51	2/28/05	79.27	77.82
5,529.74	3/15/05	79.04	77.59
5,529.96	4/26/05	78.82	77.37
5,530.15	5/24/05	78.63	77.18
5,530.35	6/30/05	78.43	76.98
5,530.47	7/29/05	78.31	76.86
5,530.95	9/12/05	77.83	76.38
5,531.50	12/7/05	77.28	75.83
5,532.43	3/8/06	76.35	74.90
5,533.49	6/13/06	75.29	73.84
5,532.58 5,532.88	7/18/06	76.20	74.75
5,532.88	11/7/06	75.90	74.45
5534.09 5.534.04	2/27/07	74.69	73.24
5,534.04 5,534.43	5/2/07	74.74	73.29
5,534.43	8/14/07	74.35	72.90

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,552.37				11/29/99	68.70	67.50	
5,553.57				1/2/00	67.50	66.30	
5,553.87				1/10/00	67.20	66.00	
5,553.72				1/17/00	67.35	66.15	
5,553.97				1/24/00	67.10	65.90	
5,553.87				2/1/00	67.20	66.00	
5,553.87				2/7/00	67.20	66.00	
5,554.17				2/14/00	66.90	65.70	
5,554.27				2/23/00	66.80	65.60	
5,554.37				3/1/00	66.70	65.50	
5,554.37				3/8/00	66.70	65.50	
5,554.27				3/15/00	66.80	65.60	
5,554.77				3/20/00	66.30	65.10	
5,554.57				3/29/00	66.50	65.30	
5,554.27				4/4/00	66.80	65.60	
5,554.57				4/13/00	66.50	65.30	
5,554.77				4/21/00	66.30	65.10	
5,554.87				4/28/00	66.20	65.00	
5,554.87				5/1/00	66.20	65.00	
5,555.27				5/11/00	65.80	64.60	
5,554.97				5/15/00	66.10	64.90	
5,555.27				5/25/00	65.80	64.60	
5,555.33				6/9/00	65.74	64.54	
5,555.45				6/16/00	65.62	64.42	
5,555.22				6/26/00	65.85	64.65	
5,555.45				7/6/00	65.62	64.42	
5,555.40				7/13/00	65.67	64.47	
5,555.45				7/18/00	65.62	64.42	
5,555.59				7/27/00	65.48	64.28	
5,555.65				8/2/00	65.42	64.22	
5,555.70				8/9/00	65.37	64.17	
5,555.74				8/16/00	65.33	64.13	
5,555.96				8/31/00	65.11	63.91	
5,555.87 5,555.05				9/8/00	65.20	64.00	
5,555.95 5,556.05				9/13/00	65.12	63.92	
5,556.05 5,556.06				9/20/00	65.02	63.82	
5,556.06 5,556.17				10/5/00	65.01	63.81	
5,556.17 5,556.20				10/12/00	64.90	63.70	
5,556.20 5,556.22				10/19/00	64.87	63.67	
5,556.22 5,556.36				10/23/00	64.85	63.65	
5,556.42				11/9/00	64.71	63.51	
J,JJ0.42				11/14/00	64.65	63.45	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
5,556.45				11/30/00	64.62	63.42	(02::1202)
5,556.15				12/6/00	64.92	63.72	
5,556.89				1/14/01	64.18	62.98	
5,557.07				2/9/01	64.00	62.80	
5,557.62				3/29/01	63.45	62.25	
5,557.51				4/30/01	63.56	62.36	
5,557.77				5/31/01	63.30	62.10	
5,557.84				6/21/01	63.23	62.03	
5,557.98				7/10/01	63.09	61.89	
5,558.33				8/20/01	62.74	61.54	
5,558.57				9/19/01	62.50	61.30	
5,558.53				10/2/01	62.54	61.34	
5,558.62				11/8/01	62.45	61.25	
5,559.03				12/3/01	62.04	60.84	
5,559.08				1/3/02	61.99	60.79	
5,559.32				2/6/02	61.75	60.55	
5,559.63				3/26/02	61.44	60.24	
5,559.55				4/9/02	61.52	60.32	
5,560.06				5/23/02	61.01	59.81	
5,559.91				6/5/02	61.16	59.96	
5,560.09				7/8/02	60.98	59.78	
5,560.01				8/23/02	61.06	59.86	
5,560.23				9/11/02	60.84	59.64	
5,560.43				10/23/02	60.64	59.44	
5,560.39				11/22/02	60.68	59.48	
5,560.61				12/3/02	60.46	59.26	
5,560.89				1/9/03	60.18	58.98	
5,560.94				2/12/03	60.13	58.93	
5,561.28				3/26/03	59.79	58.59	
5,561.35				4/2/03	59.72	58.52	
5,546.20				5/1/03	74.87	73.67	
5,539.47				6/9/03	81.60	80.40	
5,541.87				7/7/03	79.20	78.00	
5,542.12				8/4/03	78.95	77.75	
5,541.91				9/11/03	79.16	77.96	
5,544.62 5,542.67				10/2/03	76.45	75.25	
5,542.67				11/7/03	78.40	77.20	
5,549.96				12/3/03	71.11	69.91	
5,557.17				1/15/04	63.90	62.70	
5,558.65				2/10/04	62.42	61.22	
5,559.90				3/28/04	61.17	59.97	
5,560.36				4/12/04	60.71	59.51	
5,560.87				5/13/04	60.20	59.00	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
5,560.95				6/18/04	60.12	58.92	(GIMESE)
5,561.64				7/28/04	59.43	58.23	
5,543.00				8/30/04	78.07	76.87	
5,541.91				9/16/04	79.16	77.96	
5,540.08				10/11/04	80.99	79.79	
5,546.92				11/16/04	74.15	72.95	
5,546.97				12/22/04	74.10	72.90	
5,546.51				1/18/05	74.56	73.36	
5,546.66				2/28/05	74.41	73.21	
5,546.81				3/15/05	74.26	73.06	
5,548.19				4/26/05	72.88	71.68	
5,547.11				5/24/05	73.96	72.76	
5,546.98				6/30/05	74.09	72.89	
5,546.92				7/29/05	74.15	72.95	
5,547.26				9/12/05	73.81	72.61	
5,547.26				12/7/05	73.81	72.61	
5,548.86				3/8/06	72.21	71.01	•
5,548.62				6/13/06	72.45	71.25	
5,550.04				7/18/06	71.03	69.83	
5,548.32				11/7/06	72.75	71.55	
5,550.44				2/27/07	70.63	69.43	
5,549.69				5/2/07	71.38	70.18	
5,549.97				8/14/07	71.10	69.90	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,616.80	5,618.21	1.41		· · · · · · · · · · · · · · · · · · ·		126.00
5,543.21				11/29/99	75.00	73.59	
5,543.01				1/2/00	75.20	73.79	
5,543.31				1/10/00	74.90	73.49	
5,543.11				1/17/00	75.10	73.69	
5,543.41				1/24/00	74.80	73.39	
5,543.31				2/1/00	74.90	73.49	
5,543.31				2/7/00	74.90	73.49	
5,543.71				2/14/00	74.50	73.09	
5,543.76				2/23/00	74.45	73.04	
5,543.86				3/1/00	74.35	72.94	
5,543.86				3/8/00	74.35	72.94	
5,543.91				3/15/00	74.30	72.89	
5,544.31				3/20/00	73.90	72.49	
5,544.21				3/29/00	74.00	72.59	
5,544.01				4/4/00	74.20	72.79	
5,544.21				4/13/00	74.00	72.59	
5,544.41				4/21/00	73.80	72.39	
5,544.51				4/28/00	73.70	72.29	
5,544.51				5/1/00	73.70	72.29	
5,544.81				5/11/00	73.40	71.99	
5,544.51				5/15/00	73.70	72.29	
5,544.71				5/25/00	73.50	72.09	
5,544.71				6/9/00	73.50	72.09	
5,544.81				6/16/00	73.40	71.99	
5,544.68 5,544.76				6/26/00 7/6/00	73.53 73.45	72.12 72.04	
5,544.77				7/6/00	73.43 73.44	72.04	
5,544.76				7/13/00	73.44 73.45	72.03 72.04	
5,544.92				7/27/00	73.43 73.29	72.04	
5,544.96				8/2/00	73.25	71.84	
5,544.98				8/9/00	73.23	71.84	
5,544.97				8/15/00	73.24	71.82	
5,545.21				8/31/00	73.00	71.59	
5,545.31				9/8/00	72.90	71.49	
5,545.43				9/13/00	72.78	71.37	
5,545.56				9/20/00	72.65	71.24	
5,545.57				10/5/00	72.64	71.23	
5,545.81				11/9/00	72.40	70.99	
5,545.66				12/6/00	72.55	71.14	
5,546.28				1/3/01	71.93	70.52	
5,546.70				2/9/01	71.51	70.10	
5,547.18				3/27/01	71.03	69.62	

5,547.31	4/30/01	70.90	69.49
5,547.49	5/31/01	70.72	69.31
5,547.49	6/20/01	70.72	69.31
5,547.83	7/10/01	70.38	68.97
5,548.13	8/20/01	70.08	68.67
5,548.30	9/19/01	69.91	68.50
5,548.45	10/2/01	69.76	68.35
5,547.49	5/31/01	70.72	69.31
5,547.54	6/21/01	70.67	69.26
5,547.83	7/10/01	70.38	68.97
5,548.13	8/20/01	70.08	68.67
5,548.30	9/19/01	69.91	68.50
5,548.45	10/2/01	69.76	68.35
5,548.62	11/8/01	69.59	68.18
5,549.03	12/3/01	69.18	67.77
5,548.97	1/3/02	69.24	67.83
5,549.19	2/6/02	69.02	67.61
5,549.66	3/26/02	68.55	67.14
5,549.64	4/9/02	68.57	67.16
5,550.01	5/23/02	68.20	66.79
5,549.97	6/5/02	68.24	66.83
5,550.13	7/8/02	68.08	66.67
5,550.30	8/23/02	67.91	66.50
5,550.50	9/11/02	67.71	66.30
5,550.90	10/23/02	67.31	65.90
5,550.83	11/22/02	67.38	65.97
5,551.04	12/3/02	67.17	65.76
5,551.24	1/9/03	66.97	65.56
5,551.23	2/12/03	66.98	65.57
5,551.52	3/26/03	66.69	65.28
5,551.64	4/2/03	66.57	65.16
5,549.02	5/1/03	69.19	67.78
5,544.74	6/9/03	73.47	72.06
5,543.78	7/7/03	74.43	73.02
5,543.39	8/4/03	74.82	73.41
5,543.05	9/11/03	75.16	73.75
5,543.19	10/2/03	75.02	73.61
5,543.21	11/7/03	75.00	73.59
5,543.40	12/3/03	74.81	73.40
5,548.10	1/15/04	70.11	68.70
5,549.50	2/10/04	68.71	67.30
5,550.87	3/28/04	67.34	65.93
5,551.33	4/12/04	66.88	65.47
5,551.87	5/13/04	66.34	64.93
5,551.92	6/18/04	66.29	64.88
5,552.69	7/28/04	65.52	64.11
5,549.78	8/30/04	68.43	67.02
5,547.46	9/16/04	70.75	69.34

5,545.21	10/11/04	73.00	71.59
5,545.09	11/16/04	73.12	71.71
5,545.61	12/22/04	72.60	71.19
5,545.24	1/18/05	72.97	71.56
5,545.42	2/28/05	72.79	71.38
5,545.45	3/15/05	72.76	71.35
5,545.46	4/26/05	72.75	71.34
5,545.66	5/24/05	72.55	71.14
5,545.54	6/30/05	72.67	71.26
5,545.43	7/29/05	72.78	71.37
5,545.61	9/12/05	72.60	71.19
5,545.52	12/7/05	72.69	71.28
5,546.53	3/8/06	71.68	70.27
5,546.51	6/13/06	71.70	70.29
5,546.51	7/18/06	71.70	70.29
5,546.46	11/7/06	71.75	70.34
5,547.92	2/27/07	70.29	68.88
5,547.01	5/2/07	71.20	69.79
5,547.40	8/14/07	70.81	69.40

Water	Land	Measuring Point	Length Of		Total or Measured Depth to	Total Depth to	Total Depth
Elevation (WL)	Surface (LSD)	Elevation (MP)	Riser (L)	Date Of Monitoring	Water (blw.MP)	Water (blw.LSD)	Of Well
	5,636.11	5,637.59	1.48	Monitoring	(DIW.IVII)	(DIW.LSD)	121.33
5,577.09				12/20/99	60.5	59.02	121.33
5,577.09				1/2/00	60.5	59.02	
5,577.29				1/10/00	60.3	58.82	
5,577.09				1/17/00	60.5	59.02	
5,577.39				1/24/00	60.2	58.72	
5,577.29				2/1/00	60.3	58.82	
5,577.19				2/7/00	60.4	58.92	
5,577.69				2/14/00	59.9	58.42	
5,577.69				2/23/00	59.9	58.42	
5,577.79				3/1/00	59.8	58.32	
5,577.79				3/8/00	59.8	58.32	
5,577.89				3/15/00	59.7	58.22	
5,568.49				3/20/00	69.1	67.62	
5,578.14				3/29/00	59.45	57.97	
5,577.84				4/4/00	59.75	58.27	
5,578.04				4/13/00	59.55	58.07	
5,578.24				4/21/00	59.35	57.87	
5,578.39				4/28/00	59.2	57.72	
5,578.39				5/1/00	59.2	57.72	
5,578.79				5/11/00	58.8	57.32	
5,578.39				5/15/00	59.2	57.72	
5,578.79				5/25/00	58.8	57.32	
5,578.81				6/9/00	58.78	57.30	
5,578.89				6/16/00	58.7	57.22	
5,578.74				6/26/00	58.85	57.37	
5,578.86				7/6/00	58.73	57.25	
5,578.87				7/13/00	58.72	57.24	
5,578.84				7/18/00	58.75	57.27	
5,579.03				7/27/00	58.56	57.08	
5,579.03				8/2/00	58.56	57.08	
5,579.05				8/9/00	58.54	57.06	
5,579.04				8/15/00	58.55	57.07	
5,579.25				8/31/00	58.34	56.86	
5,579.35				9/8/00	58.24	56.76	
5,579.40				9/13/00	58.19	56.71	
5,579.46				9/20/00	58.13	56.65	
5,579.44				10/5/00	58.15	56.67	
5,579.79				11/9/00	57.8	56.32	
5,579.73				12/6/00	57.86	56.38	
5,580.01				1/3/01	57.58	56.10	
5,580.30				2/9/01	57.29	55.81	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,580.66				3/27/01	56.93	55.45	
5,580.75				4/30/01	56.84	55.36	
5,581.04				5/31/01	56.55	55.07	
5,581.12				6/21/01	56.47	54.99	
5,581.15				7/10/01	56.44	54.96	
5,581.51				8/20/01	56.08	54.60	
5,581.70				9/19/01	55.89	54.41	
5,581.61				10/2/01	55.98	54.50	
5,581.04				5/31/01	56.55	55.07	
5,581.12				6/21/01	56.47	54.99	
5,581.15				7/10/01	56.44	54.96	
5,581.51				8/20/01	56.08	54.60	
5,581.70				9/19/01	55.89	54.41	
5,581.61				10/2/01	55.98	54.50	
5,581.83				11/8/01	55.76	54.28	
5,582.17				12/3/01	55.42	53.94	
5,582.21				1/3/02	55.38	53.90	•
5,582.57				2/6/02	55.02	53.54	
5,583.12				3/26/02	54.47	52.99	
5,582.77				4/9/02	54.82	53.34	
5,583.21				5/23/02	54.38	52.90	
5,582.94				6/5/02	54.65	53.17	
5,582.71 5,583.67				7/8/02	54.88	53.40	
5,583.82				8/23/02	53.92	52.44	
5,584.01				9/11/02	53.77	52.29	
5,583.88				10/23/02	53.58	52.10	
5,583.81				11/22/02 12/3/02	53.71 53.78	52.23	
5,584.28				1/9/03	53.76	52.30 51.83	
5,584.41				2/12/03	53.18	51.63	
5,584.68				3/26/03	52.91	51.70	
5,584.49				4/2/03	53.10	51.62	
5,584.51				5/1/03	53.08	51.60	
5,583.59				6/9/03	54.00	52.52	
5,582.96				7/7/03	54.63	53.15	
5,582.98				8/4/03	54.61	53.13	
5,582.57				9/11/03	55.02	53.54	
5,582.25				10/2/03	55.34	53.86	
5,582.09				11/7/03	55.50	54.02	
5,582.48				12/3/03	55.11	53.63	
5,583.69				1/15/04	53.90	52.42	
5,583.89				2/10/04	53.70	52.22	
5,584.30				3/28/04	53.29	51.81	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,584.59				4/12/04	53.00	51.52	
5,584.87				5/13/04	52.72	51.24	
5,584.96				6/18/04	52.63	51.15	
5,585.50				7/28/04	52.09	50.61	
5,584.81				8/30/04	52.78	51.30	
5,584.40				9/16/04	53.19	51.71	
5,583.91				10/11/04	53.68	52.20	
5,583.39				11/16/04	54.20	52.72	
5,583.54				12/22/04	54.05	52.57	
5,583.34				1/18/05	54.25	52.77	
5,583.66				2/28/05	53.93	52.45	
5,583.87				3/15/05	53.72	52.24	
5,584.74				4/26/05	52.85	51.37	
5,585.26				5/24/05	52.33	50.85	
5,585.06				6/30/05	52.53	51.05	
5,584.67				7/29/05	52.92	51.44	
5,584.75				9/12/05	52.84	51.36	
5,584.51				12/7/05	53.08	51.60	
5,585.74				3/8/06	51.85	50.37	
5,584.74				6/13/06	52.85	51.37	
5,584.26				7/18/06	53.33	51.85	
5,584.21				11/7/06	53.38	51.90	
5,584.67				2/27/07	52.92	51.44	
5,584.06				5/2/07	53.53	52.05	
5,585.33				8/14/07	52.26	50.78	

					Total or		
***		Measuring	Length		Measured	Total	Total
Water	Land	Point	Of	D / Of	Depth to	Depth to	Depth
Elevation (WL)	Surface (LSD)	Elevation	Riser	Date Of	Water	Water	Of
(WL)		(MP)	(L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25				121.33
5,576.75				1/3/02	57.49	55.24	
5,576.92				2/6/02	57.32	55.07	
5,577.43				3/26/02	56.81	54.56	
5,577.22				4/9/02	57.02	54.77	
5,577.80				5/23/02	56.44	54.19	
5,577.47				6/5/02	56.77	54.52	
5,577.55				7/8/02	56.69	54.44	
5,578.10				8/23/02	56.14	53.89	
5,578.24				9/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/3/02	55.81	53.56	
5,578.66				1/9/03	55.58	53.33	
5,578.66				2/12/03	55.58	53.33	
5,578.78				3/26/03	55.46	53.21	
5,578.90				4/2/03	55.34	53.09	
5,578.83				5/1/03	55.41	53.16	
5,578.05				6/9/03	56.19	53.94	
5,577.38				7/7/03	56.86	54.61	
5,577.15				8/4/03	57.09	54.84	
5,576.76				9/11/03	57.48	55.23	
5,576.36				10/2/03	57.88	55.63	
5,576.05				11/7/03	58.19	55.94	
5,576.20				12/3/03	58.04	55.79	
5,577.43				1/15/04	56.81	54.56	
5,577.81				2/10/04	56.43	54.18	
5,578.47				3/28/04	55.77	53.52	
5,578.69				4/12/04	55.55	53.30	
5,578.93				5/13/04	55.31	53.06	
5,578.99				6/18/04	55.25	53.00	
5,579.18				7/28/04	55.06	52.81	
5,579.06				8/30/04	55.18	52.93	
5,578.78				9/16/04	55.46	53.21	
,				J/ 10/04	22.70	JJ.4.1	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,577.80			· · · · · · · · · · · · · · · · · · ·	10/11/04	56.44	54.19	
5,577.13				11/16/04	57.11	54.86	
5,576.96				12/22/04	57.28	55.03	
5,576.63				1/18/05	57.61	55.36	
5,576.82				2/28/05	57.42	55.17	
5,576.86				3/15/05	57.38	55.13	
5,577.52				4/26/05	56.72	54.47	
5,578.01				5/24/05	56.23	53.98	
5,578.15				6/30/05	56.09	53.84	
5,577.90				7/29/05	56.34	54.09	
5,578.02				9/12/05	56.22	53.97	
5,577.56				12/7/05	56.68	54.43	
5,579.69				3/8/06	54.55	52.30	
5,578.34				6/13/06	55.90	53.65	
5,577.94				7/18/06	56.30	54.05	
5,578.01				11/7/06	56.23	53.98	
5578.43				2/27/07	55.81	53.56	<i>i</i> .
5,577.84				5/2/07	56.40	54.15	
5,578.74				8/14/07	55.50	53.25	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,621.92	5,623.62	1.70				121.33
5,548.32				1/3/02	75.30	73.60	
5,548.73				2/6/02	74.89	73.19	
5,549.03				3/26/02	74.59	72.89	
5,548.84				4/9/02	74.78	73.08	
5,549.30				5/23/02	74.32	72.62	
5,549.01				6/5/02	74.61	72.91	
5,549.22				7/8/02	74.40	72.70	
5,549.44				8/23/02	74.18	72.48	
5,549.57				9/11/02	74.05	72.35	
5,549.64				10/23/02	73.98	72.28	
5,549.58				11/22/02	74.04	72.34	
5,549.62				12/3/02	74.00	72.30	
5,549.85				1/9/03	73.77	72.07	
5,549.91				2/12/03	73.71	72.01	
5,550.15				3/26/03	73.47	71.77	
5,550.01				4/2/03	73.61	71.91	÷
5,550.31				5/1/03	73.31	71.61	
5,550.44				6/9/03	73.18	71.48	
5,550.33				7/7/03	73.29	71.59	
5,550.35				8/4/03	73.27	71.57	
5,550.44				9/11/03	73.18	71.48	
5,550.47				10/2/03	73.15	71.45	
5,550.60				11/7/03	73.02	71.32	
5,550.60				12/3/03	73.02	71.32	
5,550.94				1/15/04	72.68	70.98	
5,551.00				2/10/04	72.62	70.92	
5,550.34				3/28/04	73.28	71.58	
5,551.54				4/12/04	72.08	70.38	
5,551.89				5/13/04	71.73	70.03	
5,551.94				6/18/04	71.68	69.98	
5,552.49				7/28/04	71.13	69.43	
5,552.74				8/30/04	70.88	69.18	
5,553.01				9/16/04	70.61	68.91	
5,553.11				10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43	68.73	
5,553.53				12/22/04	70.09	68.39	
5,553.31				1/18/05	70.31	68.61	
5,553.84				2/28/05	69.78	68.08	
5,554.04				3/15/05	69.58	67.88	
5,554.23				4/26/05	69.39	67.69	
5,553.87				5/24/05	69.75	68.05	
5,554.46				6/30/05	69.16	67.46	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,554.57				7/29/05	69.05	67.35	
5,553.86				9/12/05	69.76	68.06	
5,555.30				12/7/05	68.32	66.62	
5,556.20				3/8/06	67.42	65.72	
5,556.48				6/14/06	67.14	65.44	
5,556.37				7/18/06	67.25	65.55	
5,556.94				11/7/06	66.68	64.98	
5557.92				2/27/07	65.7	64	
5,557.84				5/2/07	65.78	64.08	
5,558.02				8/15/07	65.60	63.90	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,622.38	5,624.03	1.65				121.33
5,580.71				8/23/2002	43.32	41.67	
5,581.34				9/11/2002	42.69	41.04	
5,581.13				10/23/2002	42.90	41.25	
5,581.27				11/22/2002	42.76	41.11	
5,581.35				12/3/2002	42.68	41.03	
5,582.38				1/9/2003	41.65	40.00	
5,582.27				2/12/2003	41.76	40.11	
5,582.51				3/26/2003	41.52	39.87	
5,581.91				4/2/2003	42.12	40.47	
5,582.72				5/1/2003	41.31	39.66	
5,582.93				6/9/2003	41.10	39.45	
5,583.01				7/7/2003	41.02	39.37	
5,583.11				8/4/2003	40.92	39.27	
5,583.35				9/11/2003	40.68	39.03	
5,583.52				10/2/2003	40.51	38.86	
5,583.57				11/7/2003	40.46	38.81	•
5,583.81				12/3/2003	40.22	38.57	
5,584.17				1/15/2004	39.86	38.21	
5,584.19				2/10/2004	39.84	38.19	
5,584.31				3/28/2004	39.72	38.07	
5,584.70				4/12/2004	39.33	37.68	
5,584.68				5/13/2004	39.35	37.70	
5,584.73				6/18/2004	39.30	37.65	
5,585.16				7/28/2004	38.87	37.22	
5,585.18				8/30/2004	38.85	37.20	
5,585.29				9/16/2004	38.74	37.09	
5,585.65				10/11/2004	38.38	36.73	
5,585.71				11/16/2004	38.32	36.67	
5,586.15				12/22/2004	37.88	36.23	
5,585.94				1/18/2005	38.09	36.44	
5,586.36				2/28/2005	37.67	36.02	
5,586.75 5,587.00				3/15/2005	37.28	35.63	
5,587.00				4/26/2005	37.03	35.38	
•				5/24/2005	36.88	35.23	
5,587.38 5,587.38				6/30/2005	36.65	35.00	
5,587.38 5,587.74				7/29/2005	36.65	35.00	
5,588.23				9/12/2005	36.29	34.64	
•				12/7/2005	35.80	34.15	
5,588.72 5,588.14				3/8/2006	35.31	33.66	
5,588.14				6/13/2006	35.89	34.24	
				7/18/2006	35.90	34.25	
5,584.50				11/7/2006	39.53	37.88	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5588.65				2/27/2007	35.38	33.73	
5,588.33				5/2/2007	35.70	34.05	
5,586.29				8/14/2007	37.74	36.09	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,618.09	5,619.94	1.85				121.33
5,529.66				8/23/02	90.28	88.43	
5,530.66				9/11/02	89.28	87.43	
5,529.10				10/23/02	90.84	88.99	
5,530.58				11/22/02	89.36	87.51	
5,530.61				12/3/02	89.33	87.48	
5,529.74				1/9/03	90.20	88.35	
5,531.03				2/12/03	88.91	87.06	
5,531.82				3/26/03	88.12	86.27	
5,524.63				4/2/03	95.31	93.46	
5,531.54				5/1/03	88.40	86.55	
5,538.46				6/9/03	81.48	79.63	
5,539.38				7/7/03	80.56	78.71	
5,540.72				8/4/03	79.22	77.37	
5,541.25				9/11/03	78.69	76.84	
5,541.34				10/2/03	78.60	76.75	
5,541.69				11/7/03	78.25	76.40	
5,541.91				12/3/03	78.03	76.18	
5,542.44				1/15/04	77.50	75.65	
5,542.47				2/10/04	77.47	75.62	
5,542.84				3/28/04	77.10	75.25	
5,543.08 5,543.34				4/12/04	76.86	75.01	
5,543.40				5/13/04	76.60	74.75	
5,544.06				6/18/04	76.54	74.69	
5,544.61				7/28/04 8/30/04	75.88 75.33	74.03	
5,545.23				9/16/04	73.33 74.71	73.48 72.86	
5,546.20				10/11/04	73.74	72.80	
5,547.43				11/16/04	73.74	70.66	
5,548.96				12/22/04	70.98	69.13	
5,549.02				1/18/05	70.92	69.07	
5,550.66				2/28/05	69.28	67.43	
5,551.26				3/15/05	68.68	66.83	
5,552.23				4/26/05	67.71	65.86	
5,552.87				5/24/05	67.07	65.22	
5,553.42				6/30/05	66.52	64.67	
5,554.00				7/29/05	65.94	64.09	
5,555.21				9/12/05	64.73	62.88	
5,558.13				12/7/05	61.81	59.96	
5,562.93				3/8/06	57.01	55.16	
5,564.39				6/13/06	55.55	53.70	
5,562.09				7/18/06	57.85	56.00	
5,565.49				11/7/06	54.45	52.60	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5571.08				2/27/07	48.86	47.01	-
5,570.63				5/2/07	49.31	47.46	
5,565.24				8/14/07	54.70	52.85	

					Total or Measure		
	Land		T		d Depth	Total	7D 4 1
Water	Surfac		Lengt h Of	Date Of	to Water	Depth to Water	Total
Elevatio	e	Measuring Point	Riser	Monitori	(blw.MP	(blw.LS	Depth Of
<u>n (WL)</u>	(LSD)	Elevation (MP)	(L)	ng)	D)	Well
	5,610.9						121.3
-	2	5,612.77	1.85				3
5,518.90				8/23/02	93.87	92.02	
5,519.28				9/11/02	93.49	91.64	
5,519.95				10/23/02	92.82	90.97	
5,520.32				11/22/02	92.45	90.60	
5,520.42				12/3/02	92.35	90.50	
5,520.70				1/9/03	92.07	90.22	
5,520.89				2/12/03	91.88	90.03	
5,521.12				3/26/03	91.65	89.80	
5,521.12				4/2/03	91.65	89.80	
5,521.24				5/1/03	91.53	89.68	
5,521.34				6/9/03	91.43	89.58	•
5,521.36				7/7/03	91.41	89.56	
5,521.35				8/4/03	91.42	89.57	
5,521.30				9/11/03	91.47	89.62	
5,521.35				10/2/03	91.42	89.57	
5,521.36				11/7/03	91.41	89.56	
5,521.16				12/3/03	91.61	89.76	
5,521.29				1/15/04	91.48	89.63	
5,521.36				2/10/04	91.41	89.56	
5,521.46				3/28/04	91.31	89.46	
5,521.54				4/12/04	91.23	89.38	
5,521.59				5/13/04	91.18	89.33	
5,521.69				6/18/04	91.08	89.23	
5,521.71				7/28/04	91.06	89.21	
5,521.76				8/30/04	91.01	89.16	
5,521.77				9/16/04	91.00	89.15	
5,521.79				10/11/04	90.98	89.13	
5,521.80				11/16/04	90.97	89.12	
5,521.82				12/22/04	90.95	89.10	
5,521.82				1/18/05	90.95	89.10	
5,521.86				2/28/05	90.91	89.06	
5,521.85				3/15/05	90.92	89.07	
5,521.91				4/26/05	90.86	89.01	
5,521.93				5/24/05	90.84	88.99	
5,521.94				6/30/05	90.83	88.98	
5,521.84				7/29/05	90.93	89.08	
5,521.99				9/12/05	90.78	88.93	

Water Elevatio n (WL)	Land Surfac e (LSD)	Measuring Point Elevation (MP)	Lengt h Of Riser (L)	Date Of Monitori ng	Total or Measure d Depth to Water (blw.MP	Total Depth to Water (blw.LS D)	Total Depth Of Well
5,522.04				12/7/05	90.73	88.88	
5,522.05				3/8/06	90.72	88.87	
5,522.27				6/13/06	90.50	88.65	
5,521.92				7/18/06	90.85	89.00	
5,520.17				11/7/06	92.60	90.75	
5522.24				2/27/07	90.53	88.68	
5,522.47				5/2/07	90.30	88.45	
5,520.74				8/14/07	92.03	90.18	

5,624.15 5,625.45 1.30 121.33 5,574.79 9/11/02 50.48 49.18 5,574.97 9/11/02 50.48 49.18 5,575.10 10/23/02 50.35 49.05 5,574.99 11/22/02 50.46 49.16 5,575.28 12/3/02 50.17 48.87 5,575.41 1/9/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.54 48.24 5,575.81 5/11/03 49.64 48.34 5,575.81 5/17/03 49.64 48.34 5,570.29 8/4/03 55.16 53.86 5,500.63 10/2/03 64.82 63.52 5,500.63 10/2/03 64.82 63.52 5,570.29 8/4/03 55.16 53.86 5,572.25 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,575.25 2/10/04 5	Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,574,97 9/11/02 50.48 49,18 5,575,10 10/23/02 50.35 49,05 5,574,99 11/22/02 50.46 49,16 5,575,28 12/3/02 50.17 48,87 5,575,41 1/9/03 50.04 48,74 5,575,63 3/26/03 49,82 48,52 5,575,81 4/2/03 49,84 48,24 5,575,81 5/1/03 49,64 48,34 5,572,36 6/9/03 53.09 51,79 5,570,70 7/7/03 54,75 53,45 5,560,94 9/11/03 64,81 63,52 5,560,63 10/2/03 64,82 63,52 5,570,89 1/15/04 54,56 53,26 5,572,55 12/04 54,56 53,26 5,574,77 12/303 60,68 59,38 5,572,55 2/10/04 52,90 51,60 5,574,25 3/28/04 51,20 49,90 5,575,59 6/18/04 49,86<		5,624.15	5,625.45	1.30				121.33
5,575.10 10/23/02 50.35 49.05 5,574.99 11/22/02 50.46 49.16 5,575.28 12/3/02 50.17 48.87 5,575.41 11/9/03 50.02 48.74 5,575.43 2/12/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.54 48.24 5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.	5,574.75				8/23/02	50.70	49.40	
5,574.99 11/22/02 50.46 49.16 5,575.28 12/3/02 50.17 48.87 5,575.41 11/9/03 50.04 48.74 5,575.43 2/12/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.54 48.24 5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.81 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,574.25 3/28/04 51.20 49.90 5,574.25 3/28/04 51.20 49.90 5,575.59 5/13/04 49.92 48.62 5,575.59 5/14/04 49.8	•				9/11/02	50.48	49.18	
5,575.28 12/3/02 50.17 48.87 5,575.41 1/9/03 50.04 48.74 5,575.43 2/12/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.81 4/2/03 49.54 48.24 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,570.89 1/15/04 54.56 53.26 5,574.25 3/28/04 51.20 49.90 5,574.25 3/28/04 51.20 49.90 5,575.53 5/37.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.82 7/28/					10/23/02	50.35	49.05	
5,575.41 1/9/03 50.04 48.74 5,575.43 2/12/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.54 48.24 5,575.81 5/1/03 49.64 48.34 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.52 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,550.82 7/28/04 48.63 47.33 <td>•</td> <td></td> <td></td> <td></td> <td>11/22/02</td> <td>50.46</td> <td>49.16</td> <td></td>	•				11/22/02	50.46	49.16	
5,575.43 2/12/03 50.02 48.72 5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.64 48.34 5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,575.53 3/13/04 54.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,550.33 12/22/04 48.6					12/3/02	50.17	48.87	
5,575.63 3/26/03 49.82 48.52 5,575.91 4/2/03 49.54 48.24 5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 3/1/304 49.92 48.62 5,575.53 5/1/304 49.92 48.62 5,575.82 7/28/04 48.63 47.33 5,576.82 7/28/04 48.63 47.33 5,553.97 11/18/04 49.9					1/9/03	50.04	48.74	
5,575.91 4/2/03 49.54 48.24 5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.82 7/28/04 48.63 47.33 5,520.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.4					2/12/03	50.02	48.72	
5,575.81 5/1/03 49.64 48.34 5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.25 3/28/04 51.20 49.90 5,575.53 5/13/04 52.90 51.60 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,550.39 11/16/04 71.					3/26/03	49.82	48.52	
5,572.36 6/9/03 53.09 51.79 5,570.70 7/7/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,575.53 5/13/04 50.68 49.38 5,575.59 6/18/04 50.68 49.38 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,550.82 7/28/04 48.63 47.33 5,550.00 1/18/05 75.45 74.15 5,550.00 1/18/05 75					4/2/03	49.54	48.24	
5,570.70 777/03 54.75 53.45 5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,564.77 12/3/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.75 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.59 6/18/04 49.86 48.56 5,575.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,560.23 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,554.95 7/29/05 70.50 69.						49.64	48.34	
5,570.29 8/4/03 55.16 53.86 5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,560.03 1/18/05 75.47 74.15 5,560.00 1/18/05 75.47 74.15 5,554.91 1/2/05 65.43 64.13 5,554.91 7/29/05 70.50 69.20 5,554.95 7/29/05 70.50 69.20 5,554.89 9/12/05 69.97 68.6						53.09	51.79	
5,560.94 9/11/03 64.51 63.21 5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,564.77 12/3/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,554.91 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,554.30 6/13/06 71.15 6					7/7/03	54.75	53.45	
5,560.63 10/2/03 64.82 63.52 5,560.56 11/7/03 64.89 63.59 5,564.77 12/3/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,554.91 6/30/05 68.74 67.44 5,555.48 9/12/05 69.97 68.67 5,555.48 9/12/05 69.97 68.67 5,554.87 7/18/06 70.58 6					8/4/03	55.16	53.86	
5,560.56 11/7/03 64.89 63.59 5,564.77 12/3/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,575.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,554.91 6/30/05 68.74 67.44 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 6					9/11/03	64.51	63.21	
5,564.77 12/3/03 60.68 59.38 5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,560.03 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,554.611 5/24/05 79.34 78.04 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.87 7/18/06 70.58 69.28 5,558.77 2/27/07 66.68						64.82	63.52	
5,570.89 1/15/04 54.56 53.26 5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,555.49 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65					11/7/03	64.89	63.59	
5,572.55 2/10/04 52.90 51.60 5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,555.49 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.					12/3/03	60.68	59.38	
5,574.25 3/28/04 51.20 49.90 5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.					1/15/04	54.56	53.26	
5,574.77 4/12/04 50.68 49.38 5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.					2/10/04	52.90	51.60	
5,575.53 5/13/04 49.92 48.62 5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					3/28/04	51.20	49.90	
5,575.59 6/18/04 49.86 48.56 5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,556.71 5/24/05 79.34 78.04 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					4/12/04	50.68	49.38	
5,576.82 7/28/04 48.63 47.33 5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,556.71 5/24/05 79.34 78.04 5,554.95 7/29/05 70.50 69.20 5,554.95 7/29/05 70.50 69.20 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61	-				5/13/04	49.92	48.62	
5,527.47 9/16/04 97.98 96.68 5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,556.71 5/24/05 79.34 78.04 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					6/18/04	49.86	48.56	
5,553.97 11/16/04 71.48 70.18 5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61						48.63	47.33	
5,562.33 12/22/04 63.12 61.82 5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					9/16/04	97.98	96.68	
5,550.00 1/18/05 75.45 74.15 5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					11/16/04	71.48	70.18	
5,560.02 4/26/05 65.43 64.13 5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					12/22/04	63.12	61.82	
5,546.11 5/24/05 79.34 78.04 5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					1/18/05	75.45	74.15	
5,556.71 6/30/05 68.74 67.44 5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61	•				4/26/05	65.43	64.13	
5,554.95 7/29/05 70.50 69.20 5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					5/24/05	79.34	78.04	
5,555.48 9/12/05 69.97 68.67 5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					6/30/05	68.74	67.44	
5,551.09 12/7/05 74.36 73.06 5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					7/29/05	70.50	69.20	
5,552.85 3/8/06 72.60 71.30 5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61	-				9/12/05	69.97	68.67	
5,554.30 6/13/06 71.15 69.85 5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					12/7/05	74.36	73.06	
5,554.87 7/18/06 70.58 69.28 5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					3/8/06	72.60	71.30	
5,550.88 11/7/06 74.57 73.27 5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					6/13/06	71.15	69.85	
5558.77 2/27/07 66.68 65.38 5,548.54 5/2/07 76.91 75.61					7/18/06	70.58	69.28	
5,548.54 5/2/07 76.91 75.61					11/7/06	74.57	73.27	
70.01					2/27/07	66.68	65.38	
8/15/07 NA NA	5,548.54				5/2/07	76.91	75.61	
					8/15/07	NA	NA	

White Mesa Temporary Well (4-15) (MW-26) Over Time

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,622.19	5,624.02	1.83				121.33
5,562.91				8/23/02	61.11	59.28	
5,563.45				9/11/02	60.57	58.74	
5,563.75				10/23/02	60.27	58.44	
5,563.68				11/22/02	60.34	58.51	
5,563.68				12/3/02	60.34	58.51	
5,564.16				1/9/03	59.86	58.03	
5,564.25				2/12/03	59.77	57.94	
5,564.53				3/26/03	59.49	57.66	
5,564.46				4/2/03	59.56	57.73	
5,564.79				5/1/03	59.23	57.40	
5,564.31				6/9/03	59.71	57.88	
5,563.29				7/7/03	60.73	58.90	
5,562.76				8/4/03	61.26	59.43	
5,561.73				9/11/03	62.29	60.46	
5,561.04				10/2/03	62.98	61.15	*
5,560.39				11/7/03	63.63	61.80	
5,559.79				12/3/03	64.23	62.40	
5,561.02				1/15/04	63.00	61.17	
5,561.75				2/10/04	62.27	60.44	
5,562.98				3/28/04	61.04	59.21	
5,563.29				4/12/04	60.73	58.90	
5,564.03				5/13/04	59.99	58.16	
5,564.09				6/18/04	59.93	58.10	
5,565.08				7/28/04	58.94	57.11	
5,564.56				8/30/04	59.46	57.63	
5,563.55				9/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	
5,559,71				12/22/04	64.31	62.48	
5,559.14				1/18/05	64.88	63.05	
5,558.65				2/28/05	65.37	63.54	
5,558.54				3/15/05	65.48	63.65	
5,558.22				4/26/05	65.80	63.97	
5,558.54				5/24/05	65.48	63.65	
5,559.24				6/30/05	64.78	62.95	
5,559.38				7/29/05	64.64	62.81	
5,559.23				9/12/05	64.79	62.96	
5,557.67				12/7/05	66.35	64.52	
5,557.92				3/8/06	66.10	64.27	
5,558.47				6/13/06	65.55	63.72	
5,558.42				7/18/06	65.60	63.77	
- ,- J O -				77 10/00	05.00	03.11	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
5,558.09				11/7/06	65.93	64.10	
5557.34				2/27/07	66.68	64.85	
5,547.11				5/2/07	76.91	75.08	
5,558.52				8/14/07	65.50	63.67	

		Magguring	Longeth		Total or		_
Water	Land	Measuring Point	Length Of		Measured	Total	Total
Elevation	Surface	Elevation	Riser	Date Of	Depth to Water	Depth to Water	Depth
(WL)	(LSD)	(MP)	(L)	Monitoring	(blw.MP)	(blw.LSD)	Of Well
	5,623.41	5,625.24	1.83		(01//11/11)	(MINIESE)	121.33
5,542.17				8/23/02	83.07	81.24	121.55
5,542.39				9/11/02	82.85	81.02	
5,542.61				10/23/02	82.63	80.80	
5,542.49				11/22/02	82.75	80.92	
5,542.82				12/3/02	82.42	80.59	
5,543.03				1/9/03	82.21	80.38	
5,543.04				2/12/03	82.20	80.37	
5,543.41				3/26/03	81.83	80.00	
5,543.69				4/2/03	81.55	79.72	
5,543.77				5/1/03	81.47	79.64	
5,544.01				6/9/03	81.23	79.40	
5,544.05				7/7/03	81.19	79.36	
5,543.99				8/4/03	81.25	79.42	
5,544.17				9/11/03	81.07	79.24	
5,544.06				10/2/03	81.18	79.35	
5,544.03				11/7/03	81.21	79.38	
5,543.94				12/3/03	81.30	79.47	
5,543.98				1/15/04	81.26	79.43	
5,543.85				2/10/04	81.39	79.56	
5,544.05				3/28/04	81.19	79.36	
5,544.33				4/12/04	80.91	79.08	
5,544.55				5/13/04	80.69	78.86	
5,544.59				6/18/04	80.65	78.82	
5,545.08				7/28/04	80.16	78.33	
5,545.26				8/30/04	79.98	78.15	
5,545.48				9/16/04	79.76	77.93	
5,545.61				10/11/04	79.63	77.80	
5,545.46				11/16/04	79.78	77.95	
5,545.66				12/22/04	79.58	77.75	
5,545.33				1/18/05	79.91	78.08	
5,545.51				2/28/05	79.73	77.90	
5,545.57				3/15/05	79.67	77.84	
5,545.46				4/26/05	79.78	77.95	
5,545.45				5/24/05	79.79	77.96	
5,545.33				6/30/05	79.91	78.08	
5,545.16				7/29/05	80.08	78.25	
5,545.54				9/12/05	79.70	77.87	
5,545.77				12/7/05	79.47	77.64	
5,546.09				3/8/06	79.15	77.32	
5,545.94				6/13/06	79.30	77.47	
5,545.94				7/18/06	79.30	77.47	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of Riser	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	(L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,546.24				11/7/06	79.00	77.17	
5546.81				2/27/07	78.43	76.6	
5546.56				5/2/07	78.68	76.85	
5,546.81				8/15/07	78.43	76.60	

					Total or		
		Measuring	Length		Measured	Total	Total
Water	Land	Point	Of		Depth to	Depth to	Depth
Elevation	Surface	Elevation	Riser	Date Of	Water	Water	Of
(WL)	(LSD)	(MP)	(L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,629.53	5,631.39	1.86				121.33
5,581.88				8/23/02	49.51	47.65	
5,582.14				9/11/02	49.25	47.39	
5,582.06				10/23/02	49.33	47.47	
5,582.07				11/22/02	49.32	47.46	
5,582.16				12/3/02	49.23	47.37	
5,582.28				1/9/03	49.11	47.25	
5,582.29				2/12/03	49.10	47.24	
5,582.74				3/26/03	48.65	46.79	
5,582.82				4/2/03	48.57	46.71	
5,548.47				5/1/03	82.92	81.06	
5,564.76				6/9/03	66.63	64.77	
5,562.53				7/7/03	68.86	67.00	
5,564.10				8/4/03	67.29	65.43	
5,566.01				8/30/04	65.38	63.52	
5,555.16				9/16/04	76.23	74.37	
5,549.80				10/11/04	81.59	79.73	•
5,546.04				11/16/04	85.35	83.49	
5,547.34				12/22/04	84.05	82.19	
5,548.77				1/18/05	82.62	80.76	
5,551.18				2/28/05	80.21	78.35	
5,556.81				3/15/05	74.58	72.72	
5,562.63				4/26/05	68.76	66.90	
5,573.42				5/24/05	57.97	56.11	
5,552.94				7/29/05	78.45	76.59	
5,554.00				9/12/05	77.39	75.53	
5,555.98				12/7/05	75.41	73.55	
5,552.00				3/8/06	79.39	77.53	
5,545.74				6/13/06	85.65	83.79	
5,544.06				7/18/06	87.33	85.47	
5,548.81				11/7/06	82.58	80.72	
5543.59				2/27/07	87.8	85.94	
5544.55				5/2/07	86.84	84.98	
5,558.97				8/15/07	72.42	70.56	
						· •	

5,629.53	1.01			(blw.LSD)	Well
					106.0
		7/29/05 8/30/05 9/12/05 12/7/05 3/8/06 6/13/06 7/18/06 11/7/06 2/27/07 5/2/07	63.83 83.00 89.24 88.36 89.20 99.10 60.40 81.58 80.28 78.95		
			8/30/05 9/12/05 12/7/05 3/8/06 6/13/06 7/18/06 11/7/06 2/27/07	8/30/05 83.00 9/12/05 89.24 12/7/05 88.36 3/8/06 89.20 6/13/06 99.10 7/18/06 60.40 11/7/06 81.58 2/27/07 80.28 5/2/07 78.95	8/30/05 83.00 9/12/05 89.24 12/7/05 88.36 3/8/06 89.20 6/13/06 99.10 7/18/06 60.40 11/7/06 81.58 2/27/07 80.28 5/2/07 78.95

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,638.20	5,639.35	1.15				120.92
5,582.98				7/29/05	56.37		
5,583.43				8/30/05	55.92		
5,581.87				9/12/05	57.48		
5,580.50				12/7/05	58.85		
5,583.64				3/8/06	55.71		
5,580.55				6/13/06	58.80		
5,578.95				7/18/06	60.40		
5,578.47				11/7/06	60.88		
5,579.53				2/27/07	59.82		
5,578.07				5/2/07	61.28		
5,583.41				8/15/07	55.94		

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,627.83	5,629.00	1.17				113.5
5,571.89 5,572.20	·			7/29/05 8/30/05	57.11 56.80		
5,572.08 5,571.61				9/12/05 12/7/05	56.92 57.39		
5,571.85 5,571.62 5,571.42				3/8/06 6/13/06 7/18/06	57.15 57.38 57.58		
5,571.02 5,571.24				11/7/06 2/27/07	57.98 57.76		
5,570.75 5,571.82				6/29/07 8/14/07	58.25 57.18		

ANALYTICAL SUMMARY REPORT

August 31, 2007

Denison Mines 6425 S Hwy 191 PO Box 809 Blanding, UT 84511

Workorder No.: C07081008

Project Name: 3rd Quarter Chloroform Sampling Event

Energy Laboratories, Inc. received the following 31 samples from Denison Mines on 8/17/2007 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive D	ate Matrix	Test
C07081008-001	MW4	08/15/07 10:15	08/17/07	Aqueous	Chloride Nitrogen, Nitrate + Nitrite SW8260B VOCs, Standard List
C07081008-002	TW4-1	08/15/07 09:53	08/17/07	Aqueous	Same As Above
C07081008-003	TW4-2	08/15/07 10:38	08/17/07	Aqueous	Same As Above
C07081008-004	TW4-3	08/15/07 14:29	08/17/07	Aqueous	Same As Above
C07081008-005	TW4-4	08/15/07 09:44	08/17/07	Aqueous	Same As Above
C07081008-006	TW4-5	08/15/07 13:38	08/17/07	Aqueous	Same As Above
C07081008-007	TW4-6	08/15/07 09:35	08/17/07	Aqueous	Same As Above
C07081008-008	TW4-7	08/15/07 10:01	08/17/07	Aqueous	Same As Above
C07081008-009	TW4-8	08/15/07 10:29	08/17/07	Aqueous	Same As Above
C07081008-010	TW4-9	08/15/07 13:47	08/17/07	Aqueous	Same As Above
C07081008-011	TW4-10	08/15/07 13:21	08/17/07	Aqueous	Same As Above
C07081008-012	TW4-11	08/15/07 10:50	08/17/07	Aqueous	Same As Above
C07081008-013	TW4-12	08/15/07 08:55	08/17/07	Aqueous	Same As Above
C07081008-014	TW4-13	08/15/07 09:04	08/17/07	Aqueous	Same As Above
C07081008-015	TW4-14	08/15/07 09:13	08/17/07	Aqueous	Same As Above
C07081008-016	TW4-15	08/15/07 13:58	08/17/07	Aqueous	Same As Above
C07081008-017	TW4-16	08/15/07 10:59	08/17/07	Aqueous	Same As Above
C07081008-018	TW4-17	08/15/07 14:48	08/17/07	Aqueous	Same As Above
C07081008-019	TW4-18	08/15/07 08:10	08/17/07	Aqueous	Same As Above
C07081008-020	TW4-19	08/15/07 15:24	08/17/07	Aqueous	Same As Above
007081008-021	TM4-20	08/15/07 14:18	08/17/07	Aqueous	Same As Above
C07081008-022	TM4-21	08/15/07 08:25	08/17/07	Aqueous	Same As Above
007081008-023	TM4-22	08/15/07 11:10	08/17/07	Aqueous	Same As Above
07081008-024	TM4-23	08/15/07 09:26	08/17/07	Aqueous	Same As Above

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307. 515 • Fax 307.234.1639 • casper@energylab.cq www.energylab.com

C07081008-025 TM4-24	08/15/07 11:21 08/17/07	Aqueous	Same As Above
C07081008-026 TM4-25	08/15/07 08:37 08/17/07	Aqueous	Same As Above
C07081008-027 TM4-60	08/13/07 15:18 08/17/07	Aqueous	Same As Above
C07081008-028 TM4-63	08/13/07 14:58 08/17/07	Aqueous	Same As Above
C07081008-029 TM4-65	08/15/07 14:18 08/17/07	Aqueous	Same As Above
C07081008-030 TM4-70	08/15/07 13:58 08/17/07	Aqueous	Same As Above
C07081008-031 Trip Blank	08/15/07 15:24 08/17/07	Aqueous	SW8260B VOCs, Standard List

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative or Report.

If you have any questions regarding these tests results, please call.

Report Approved By:

-2-TRACK# C07081008

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-001

Client Sample ID: MW4

Report Date: 08/31/07

Collection Date: 08/15/07 10:15

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/	Method	Analysis Date / By
MAJOR IONS			`		· · · · · · · · · · · · · · · · · · ·		
Chloride	47	mg/L		1		A4500-CI B	08/21/07 08:01 / ji
Nitrogen, Nitrate+Nitrite as N	6.2	mg/L		0.2		E353,2	08/20/07 12:36 / IJI
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.9	ug/L		1.0		SW8260B	08/22/07 22:08 / dkh
Chloroform	2600	ug/L	D	50		SW8260B	08/22/07 14:13 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 22:08 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 22:08 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC		80-120		SW8260B	08/22/07 22:08 / dkh
Surr: Dibromofluoromethane	107	%REC		70-130		SW8260B	08/22/07 22:08 / dkh
Surr: p-Bromofluorobenzene	112	%REC		80-120		SW8260B	08/22/07 22:08 / dkh
Surr: Toluene-d8	101	%REC		80-120		SW8260B	08/22/07 22:08 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-002

Client Sample ID: TW4-1

Report Date: 08/31/07

Collection Date: 08/15/07 09:53

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	43	mg/L		1		A4500-CI B	00/04/07 00:40 14
Nitrogen, Nitrate+Nitrite as N	8.4	mg/L		0.2		E353.2	08/21/07 08:13 / jl 08/20/07 12:38 / ljl
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.3	ug/L		1.0		SW8260B	08/22/07 22:49 / dkh
Chloroform	2300	ug/L	D	50		SW8260B	08/22/07 14:52 / dkh
Chloromethane	ND	ug/L	_	1.0		SW8260B	08/22/07 14:52 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 22:49 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	08/22/07 22:49 / dkh
Surr: Dibromofluoromethane	100	%REC		70-130		SW8260B	08/22/07 22:49 / dkh
Surr: p-Bromofluorobenzene	109	%REC		80-120		SW8260B	08/22/07 22:49 / dkh
Surr: Toluene-d8	100	%REC		80-120		SW8260B	08/22/07 22:49 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-003

Client Sample ID: TW4-2

Report Date: 08/31/07

Collection Date: 08/15/07 10:38

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS			/				
Chloride	49	mg/L		1		A4500-CI B	08/21/07 08:14 / jl
Nitrogen, Nitrate+Nitrite as N	7.3	mg/L		0.2		E353.2	08/20/07 12:41 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	2.2	ug/L		1.0		SW8260B	08/22/07 23:29 / dkh
Chloroform	340	ug/L	D	5.0		SW8260B	08/22/07 15:31 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 23:29 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 23:29 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC		80-120		SW8260B	08/22/07 23:29 / dkh
Surr: Dibromofluoromethane	106	%REC		70-130		SW8260B	08/22/07 23:29 / dkh
Surr: p-Bromofluorobenzene	106	%REC		80-120		SW8260B	08/22/07 23:29 / dkh
Surr: Toluene-d8	102	%REC		80-120		SW8260B	08/22/07 23:29 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-004

Client Sample ID: TW4-3

Report Date: 08/31/07

Collection Date: 08/15/07 14:29

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	MCI RL QCI	 '	Analysis Date / By
MAJOR IONS						
Chloride	24	mg/L		1	A4500-CI B	08/21/07 08:15 / jl
Nitrogen, Nitrate+Nitrite as N	3.1	mg/L	C).1	E353.2	08/20/07 12:43 / lji
VOLATILE ORGANIC COMPOUNDS						
Carbon tetrachloride	ND	ug/L	1	.0	SW8260B	08/22/07 16:49 / dkh
Chloroform	ND	ug/L	1	.0	SW8260B	08/22/07 16:49 / dkh
Chloromethane	ND	ug/L	1	.0	SW8260B	08/22/07 16:49 / dkh
Methylene chloride	ND	ug/L	1	.0	SW8260B	08/22/07 16:49 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC	80-	120	SW8260B	08/22/07 16:49 / dkh
Surr: Dibromofluoromethane	100	%REC	70-	-130	SW8260B	08/22/07 16:49 / dkh
Surr: p-Bromofluorobenzene	109	%REC	80-	120	SW8260B	08/22/07 16:49 / dkh
Surr; Toluene-d8	101	%REC	80-	120	SW8260B	08/22/07 16:49 / dkh

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-005

Client Sample ID: TW4-4

Report Date: 08/31/07

Collection Date: 08/15/07 09:44

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS						(progra	
Chloride	45	mg/L		1		A4500-CI B	08/21/07 08:16 / jl
Nitrogen, Nitrate+Nitrite as N	9.5	mg/L		0.2		E353.2	08/20/07 12:46 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.5	ug/L		1.0		SW8260B	08/23/07 00:09 / dkh
Chloroform	2700	ug/L	D	50		SW8260B	08/22/07 16:10 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 00:09 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 00:09 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	08/23/07 00:09 / dkh
Surr: Dibromofluoromethane	103	%REC		70-130		SW8260B	08/23/07 00:09 / dkh
Surr: p-Bromofluorobenzene	105	%REC		80-120		SW8260B	08/23/07 00:09 / dkh
Surr: Toluene-d8	101	%REC		80-120		SW8260B	08/23/07 00:09 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-006

Client Sample ID: TW4-5

Report Date: 08/31/07

Collection Date: 08/15/07 13:38

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS			**			<u>-</u> . i	
Chloride	38	mg/L		1		A4500-CI B	08/21/07 08:17 / il
Nitrogen, Nitrate+Nitrite as N	7.7	mg/L		0.2		E353.2	08/20/07 12:56 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/22/07 17:27 / dkh
Chloroform	9.2	ug/L		1.0		SW8260B	08/22/07 17:27 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 17:27 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 17:27 / dkh
Surr: 1,2-Dichlorobenzene-d4	103	%REC	8	30-120		SW8260B	08/22/07 17:27 / dkh
Surr: Dibromofluoromethane	103	%REC	7	70-130		SW8260B	08/22/07 17:27 / dkh
Surr: p-Bromofluorobenzene	111	%REC	8	30-120		SW8260B	08/22/07 17:27 / dkh
Surr: Toluene-d8	100	%REC	8	80-120		SW8260B	08/22/07 17:27 / dkh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-007

Client Sample ID: TW4-6

Report Date: 08/31/07

Collection Date: 08/15/07 09:35

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	36	mg/L		1		A4500-CI B	08/21/07 08:17 / jl
Nitrogen, Nitrate+Nitrite as N	0.7	mg/L		0.1		E353.2	08/20/07 12:58 / ljl
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/22/07 18:05 / dkh
Chloroform	18	ug/L		1.0		SW8260B	08/22/07 18:05 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 18:05 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 18:05 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC	8	30-120		SW8260B	08/22/07 18:05 / dkh
Surr: Dibromofluoromethane	103	%REC	7	0-130		SW8260B	08/22/07 18:05 / dkh
Surr: p-Bromofluorobenzene	109	%REC	8	30-120		SW8260B	08/22/07 18:05 / dkh
Surr: Toluene-d8	102	%REC	8	80-120		SW8260B	08/22/07 18:05 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-008

Client Sample ID: TW4-7

Report Date: 08/31/07

Collection Date: 08/15/07 10:01

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	44	mg/L		1		A4500-CI B	08/21/07 08:12 / jl
Nitrogen, Nitrate+Nitrite as N	4.7	mg/L		0.1		E353.2	08/20/07 13:06 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.4	ug/L		1.0		SW8260B	08/22/07 18:46 / dkh
Chloroform	2300	ug/L	D	50		SW8260B	08/23/07 20:50 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 18:46 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 18:46 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	08/22/07 18:46 / dkh
Surr: Dibromofluoromethane	98.0	%REC		70-130		SW8260B	08/22/07 18:46 / dkh
Surr: p-Bromofluorobenzene	108	%REC		80-120		SW8260B	08/22/07 18:46 / dkh
Surr: Toluene-d8	102	%REC		80-120		SW8260B	08/22/07 18:46 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

Client Sample ID: TW4-8

C07081008-009

Report Date: 08/31/07

Collection Date: 08/15/07 10:29

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS		a st. statistica availa		•			
Chloride	42	mg/L		1		A4500-CI B	08/21/07 08:18 / ji
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	08/20/07 13:08 / ljil
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/22/07 19:25 / dkh
Chloroform	1.5	ug/L		1.0		SW8260B	08/23/07 14:13 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 19:25 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 19:25 / dkh
Surr: 1,2-Dichlorobenzene-d4	107	%REC	8	0-120		SW8260B	08/22/07 19:25 / dkh
Surr: Dibromofluoromethane	106	%REC	7	0-130		SW8260B	08/22/07 19:25 / dkh
Surr: p-Bromofluorobenzene	111	%REC	8	0-120		SW8260B	08/22/07 19:25 / dkh
Surr: Toluene-d8	102	%REC	8	0-120		SW8260B	08/22/07 19:25 / dkh

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

Client Sample ID: TW4-9

C07081008-010

Report Date: 08/31/07

Collection Date: 08/15/07 13:47

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	38	mg/L		1		A4500-CI B	08/21/07 08:19 / 1
Nitrogen, Nitrate+Nitrite as N	1.8	mg/L		0.1		E353.2	08/20/07 13:11 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/22/07 20:06 / dkh
Chloroform	9.5	ug/L		1.0		SW8260B	08/22/07 20:06 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/22/07 20:06 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/22/07 20:06 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC	8	0-120		SW8260B	08/22/07 20:06 / dkh
Surr: Dibromofluoromethane	100	%REC	7	0-130		SW8260B	08/22/07 20:06 / dkh
Surr: p-Bromofluorobenzene	110	%REC	8	0-120		SW8260B	08/22/07 20:06 / dkh
Surr: Toluene-d8	100	%REC	8	0-120		SW8260B	08/22/07 20:06 / dkh

Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-011

Client Sample ID: TW4-10

Report Date: 08/31/07

Collection Date: 08/15/07 13:21

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL.	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	59	mg/L		1		A4500-CI B	08/21/07 08:23 / jl
Nitrogen, Nitrate+Nitrite as N	7.3	mg/L		0.2		E353.2	08/20/07 13:18 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 03:34 / dkh
Chloroform	660	ug/L	D	100		SW8260B	08/23/07 21:31 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 03:34 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 03:34 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC		80-120		SW8260B	08/24/07 03:34 / dkh
Surr: Dibromofluoromethane	99.0	%REC		70-130		SW8260B	08/24/07 03:34 / dkh
Surr: p-Bromofluorobenzene	108	%REC		80-120		SW8260B	08/24/07 03:34 / dkh
Surr: Toluene-d8	101	%REC		80-120		SW8260B	08/24/07 03:34 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-012

Client Sample ID: TW4-11

Report Date: 08/31/07

Collection Date: 08/15/07 10:50

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	53	mg/L		1		A4500-CI B	08/21/07 08:27 / jl
Nitrogen, Nitrate+Nitrite as N	10.2	mg/L		0.2		E353.2	08/20/07 13:21 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.7	ug/L		1.0		SW8260B	08/24/07 04:14 / dkh
Chloroform	4500	ug/L	D	100		SW8260B	08/23/07 23:31 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 04:14 / dkh
Methylene chloride	1.1	ug/L		1.0		SW8260B	08/24/07 04:14 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC		80-120		SW8260B	08/24/07 04:14 / dkh
Surr: Dibromofluoromethane	105	%REC		70-130		SW8260B	08/24/07 04:14 / dkh
Surr: p-Bromofluorobenzene	105	%REC		80-120		SW8260B	08/24/07 04:14 / dkh
Surr: Toluene-d8	100	%REC		80-120		SW8260B	08/24/07 04:14 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-013

Client Sample ID: TW4-12

Report Date: 08/31/07

Collection Date: 08/15/07 08:55

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers		MCL/ QCL	Method	Analysis Date / By
MAJOR IONS			·····				
Chloride	29	mg/L		1		A4500-CI B	08/21/07 08:29 / il
Nitrogen, Nitrate+Nitrite as N	1.4	mg/L		0.1		E353.2	08/20/07 13:23 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 14:52 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 14:52 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 14:52 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 14:52 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC	86	0-120		SW8260B	08/23/07 14:52 / dkh
Surr: Dibromofluoromethane	108	%REC	70	0-130		SW8260B	08/23/07 14:52 / dkh
Surr: p-Bromofluorobenzene	106	%REC	80	0-120		SW8260B	08/23/07 14:52 / dkh
Surr: Toluene-d8	102	%REC	80	D-120		SW8260B	08/23/07 14:52 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-014

Client Sample ID: TW4-13

Report Date: 08/31/07

Collection Date: 08/15/07 09:04

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS					•		
Chloride	58	mg/L		1		A4500-CI B	08/21/07 08:30 / jl
Nitrogen, Nitrate+Nitrite as N	4.4	mg/L		0.1		E353.2	08/20/07 13:26 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 15:30 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 15:30 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 15:30 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 15:30 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC	8	30-120		SW8260B	08/23/07 15:30 / dkh
Surr: Dibromofluoromethane	108	%REC	7	70-130		SW8260B	08/23/07 15:30 / dkh
Surr: p-Bromofluorobenzene	107	%REC	8	30-120		SW8260B	08/23/07 15:30 / dkh
Surr: Toluene-d8	102	%REC	8	30-120		SW8260B	08/23/07 15:30 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-015

Client Sample ID: TW4-14

Report Date: 08/31/07

Collection Date: 08/15/07 09:13

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	36	mg/L		1		A4500-CI B	08/21/07 08:31 / ji
Nitrogen, Nitrate+Nitrite as N	1.1	mg/L		0.1		E353.2	08/20/07 13:28 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 16:10 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 16:10 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 16:10 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 16:10 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC	8	30-120		SW8260B	08/23/07 16:10 / dkh
Surr: Dibromofluoromethane	111	%REC	7	70-130		SW8260B	08/23/07 16:10 / dkh
Surr: p-Bromofluorobenzene	107	%REC	8	30-120		SW8260B	08/23/07 16:10 / dkh
Surr: Toluene-d8	102	%REC	8	30-120		SW8260B	08/23/07 16:10 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

ENERGY LABORATORIES, INC. * 2393 Salt Creek Hwy (82601) * PO Box 3258 * Casper, WY 82602 Toll Free 888.235.0515 * 307.235.0515 * FAX 307.234.1639 * casper@energylab.com * www.energylab.com

LABORATORY ANALYTICAL REPORT

Client:

Denison Mines (USA) Corp

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-016

Client Sample ID: TW4-15

Revised Date: 12/03/07 Report Date: 08/31/07

Collection Date: 08/15/07 13:58

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	57	mg/L		1		A4500-CI B	08/21/07 08:31 / jl
Nitrogen, Nitrate+Nitrite as N	1.0	mg/L		0.1		E353.2	08/20/07 13:38 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 04:55 / dkh
Chloroform	1400	ug/L	D	50		SW8260B	08/24/07 18:21 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 04:55 / dkh
Methylene chloride	36	ug/L		1.0		SW8260B	08/24/07 04:55 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC		80-120		SW8260B	08/24/07 04:55 / dkh
Surr: Dibromofluoromethane	103	%REC		70-130		SW8260B	08/24/07 04:55 / dkh
Surr: p-Bromofluorobenzene	105	%REC		80-120		SW8260B	08/24/07 04:55 / dkh
Surr: Toluene-d8	100	%REC		80-120		SW8260B	08/24/07 04:55 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

ENERGY LABORATORIES, INC. * 2393 Salt Creek Hwy (82601) * PO Box 3258 * Casper, WY 82602 Toll Free 888.235.0515 * 307.235.0515 * FAX 307.234.1639 * casper@energylab.com * www.energylab.com

CLIENT:

Denison Mines (USA) Corp

Project:

3rd Quarter Chloroform Sampling Event

Sample Delivery Group: C07081008

CASE NARRATIVE

Date: 03-Dec-07

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

REVISED/SUPPLEMENTAL REPORT

The attached analytical report has been revised from a previously submitted report due to data correction for the Chloride result on sample TW4-15. Titrant used in calculation was 0.1 vs. 0.01. Data has been repaired.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

PCB ANALYSIS USING EPA 505

Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-f - Energy Laboratories, Inc. - Idaho Falls, ID eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD

eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS:

USEPA: WY00002; FL-DOH NELAC: E87641; Arizona: AZ0699; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER,WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-017

Client Sample ID: TW4-16

Report Date: 08/31/07

Collection Date: 08/15/07 10:59

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	66	mg/L		1		A4500-CI B	08/21/07 08:32 / jl
Nitrogen, Nitrate+Nitrite as N	5.4	mg/L		0.2		E353.2	08/20/07 13:41 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0	•	SW8260B	08/23/07 16:50 / dkh
Chloroform	7.1	ug/L		1.0		SW8260B	08/23/07 16:50 / dkh
Chloromethane	ND	'ug/L		1.0		SW8260B	08/23/07 16:50 / dkh
Methylene chloride	5.1	ug/L		1.0		SW8260B	08/23/07 16:50 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC	8	0-120		SW8260B	08/23/07 16:50 / dkh
Surr: Dibromofluoromethane	105	%REC	7	70-130		SW8260B	08/23/07 16:50 / dkh
Surr: p-Bromofluorobenzene	104	%REC	8	30-120		SW8260B	08/23/07 16:50 / dkh
Surr: Toluene-d8	103	%REC	٤	80-120		SW8260B	08/23/07 16:50 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-018

Client Sample ID: TW4-17

Report Date: 08/31/07

Collection Date: 08/15/07 14:48

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	QCL MCL/	Method	Analysis Date / By
MAJOR IONS							
Chloride	31	mg/L		1		A4500-CI B	08/21/07 08:33 / jl
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	08/20/07 13:43 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 17:30 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 17:30 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 17:30 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 17:30 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC	8	0-120		SW8260B	08/23/07 17:30 / dkh
Surr: Dibromofluoromethane	111	%REC	7	0-130		SW8260B	08/23/07 17:30 / dkh
Surr: p-Bromofluorobenzene	108	%REC	8	0-120		SW8260B	08/23/07 17:30 / dkh
Surr: Toluene-d8	101	%REC	8	0-120		SW8260B	08/23/07 17:30 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-019

Client Sample ID: TW4-18

Report Date: 08/31/07

Collection Date: 08/15/07 08:10

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	32	mg/L		1		A4500-CI B	08/21/07 08:34 / il
Nitrogen, Nitrate+Nitrite as N	5.0	mg/L		0.2		E353.2	08/20/07 13:46 / IJI
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 18:09 / dkh
Chloroform	8.9	ug/L		1.0		SW8260B	08/23/07 18:09 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 18:09 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 18:09 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC	8	30-120		SW8260B	08/23/07 18:09 / dkh
Surr: Dibromofluoromethane	102	%REC	7	70-130		SW8260B	08/23/07 18:09 / dkh
Surr: p-Bromofluorobenzene	106	%REC	8	30-120		SW8260B	08/23/07 18:09 / dkh
Surr: Toluene-d8	99.0	%REC	8	80-120		SW8260B	08/23/07 18:09 / dkh

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-020

Client Sample ID: TW4-19

Report Date: 08/31/07

Collection Date: 08/15/07 15:24

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS			***				
Chloride	129	mg/L		1		A4500-CI B	08/21/07 08:37 / jl
Nitrogen, Nitrate+Nitrite as N	4.1	mg/L		0.1		E353.2	08/20/07 13:48 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1,9	ug/L		1.0		SW8260B	08/24/07 05:35 / dkh
Chloroform	1100	ug/L	D	50		SW8260B	08/24/07 00:53 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 05:35 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 05:35 / dkh
Surr: 1,2-Dichlorobenzene-d4	106	%REC		80-120		SW8260B	08/24/07 05:35 / dkh
Surr: Dibromofluoromethane	102	%REC		70-130		SW8260B	08/24/07 05:35 / dkh
Surr: p-Bromofluorobenzene	106	%REC		80-120		SW8260B	08/24/07 05:35 / dkh
Surr: Toluene-d8	100	%REC		80-120		SW8260B	08/24/07 05:35 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-021

Client Sample ID: TM4-20

Report Date: 08/31/07

Collection Date: 08/15/07 14:18

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS					,		
Chloride	117	mg/L		1		A4500-CI B	08/21/07 08:44 / jl
Nitrogen, Nitrate+Nitrite as N	2,1	mg/L		0.1		E353.2	08/20/07 13:58 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	3.5	ug/L		1.0		SW8260B	08/24/07 06:16 / dkh
Chloroform	5200	ug/L	D	100		SW8260B	08/24/07 01:33 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 06:16 / dkh
Methylene chloride	1.8	ug/L		1.0		SW8260B	08/24/07 06:16 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC		80-120		SW8260B	08/24/07 06:16 / dkh
Surr: Dibromofluoromethane	108	%REC		70-130		SW8260B	08/24/07 06:16 / dkh
Surr: p-Bromofluorobenzene	108	%REC		80-120		SW8260B	08/24/07 06:16 / dkh
Surr: Toluene-d8	102	%REC		80-120		SW8260B	08/24/07 06:16 / dkh

Report Definitions:

RL - Analyte reporting limit.

S: QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-022

Client Sample ID: TM4-21

Report Date: 08/31/07

Collection Date: 08/15/07 08:25

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	300	mg/L		1		A4500-CI B	08/21/07 08:45 / jl
Nitrogen, Nitrate+Nitrite as N	8.6	mg/L		0.2		E353.2	08/20/07 14:01 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 06:56 / dkh
Chloroform	140	ug/L	D	10		SW8260B	08/24/07 02:13 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 06:56 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 06:56 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC		80-120		SW8260B	08/24/07 06:56 / dkh
Surr: Dibromofluoromethane	102	%REC		70-130		SW8260B	08/24/07 06:56 / dkh
Surr: p-Bromofluorobenzene	105	%REC		80-120		SW8260B	08/24/07 06:56 / dkh
Surr: Toluene-d8	102	%REC		80-120		SW8260B	08/24/07 06:56 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-023

Client Sample ID: TM4-22

Report Date: 08/31/07

Collection Date: 08/15/07 11:10

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS		<u>-</u>					
Chloride	259	mg/L		1		A4500-CI B	08/21/07 08:46 / jl
Nitrogen, Nitrate+Nitrite as N	19.3	mg/L	D	0.3		E353.2	08/20/07 14:03 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 07:37 / dkh
Chloroform	530	ug/L	D	10		SW8260B	08/24/07 02:53 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 07:37 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 07:37 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC		80-120		SW8260B	08/24/07 07:37 / dkh
Surr: Dibromofluoromethane	100	%REC		70-130		SW8260B	08/24/07 07:37 / dkh
Surr: p-Bromofluorobenzene	107	%REC		80-120		SW8260B	08/24/07 07:37 / dkh
Surr: Taluene-d8	100	%REC		80-120		SW8260B	08/24/07 07:37 / dkh

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-024

Client Sample ID: TM4-23

Report Date: 08/31/07

Collection Date: 08/15/07 09:26

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS				<u> </u>			
Chloride	46	mg/L		1		A4500-CI B	08/21/07 08:47 / jī
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	08/20/07 14:06 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 18:49 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 18:49 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 18:49 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 18:49 / dkh
Surr: 1,2-Dichlorobenzene-d4	103	%REC	80	0-120		SW8260B	08/23/07 18:49 / dkh
Surr: Dibromofluoromethane	105	%REC	70	0-130		SW8260B	08/23/07 18:49 / dkh
Surr: p-Bromofluorobenzene	105	%REC	80	0-120		SW8260B	08/23/07 18:49 / dkh
Surr: Toluene-d8	102	%REC	80	0-120		SW8260B	08/23/07 18:49 / dkh

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-025

Client Sample ID: TM4-24

Report Date: 08/31/07

Collection Date: 08/15/07 11:21

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							-
Chloride	791	mg/L		1		A4500-CI B	08/21/07 08:48 / jl
Nitrogen, Nitrate+Nitrite as N	29.0	mg/L	D	0.3		E353.2	08/20/07 14:08 / ljl
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 19:29 / dkh
Chloroform	2.2	ug/L		1.0		SW8260B	08/23/07 19:29 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 19:29 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 19:29 / dkh
Surr: 1,2-Dichlorobenzene-d4	107	%REC		80-120		SW8260B	08/23/07 19:29 / dkh
Surr: Dibromofluoromethane	103	%REC		70-130		SW8260B	08/23/07 19:29 / dkh
Surr: p-Bromofluorobenzene	108	%REC		80-120		SW8260B	08/23/07 19:29 / dkh
Surr: Toluene-d8	102	%REC		80-120		SW8260B	08/23/07 19:29 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-026

Client Sample ID: TM4-25

Report Date: 08/31/07

Collection Date: 08/15/07 08:37

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers		MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	382	mg/L		1		A4500-CI B	08/21/07 08:49 / jt
Nitrogen, Nitrate+Nitrite as N	16.7	mg/L	1	0.2		E353.2	08/20/07 14:18 / iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/23/07 20:10 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/23/07 20:10 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/23/07 20:10 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/23/07 20:10 / dkh
Surr: 1,2-Dichlorobenzene-d4	105	%REC	80	-120		SW8260B	08/23/07 20:10 / dkh
Surr: Dibromofluoromethane	104	%REC	70)-130		SW8260B	08/23/07 20:10 / dkh
Surr: p-Bromofluorobenzene	107	%REC	80)-120		SW8260B	08/23/07 20:10 / dkh
Surr: Toluene-d8	102	%REC	80	-120		SW8260B	08/23/07 20:10 / dkh

Report

RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-027

Client Sample ID: TM4-60

Report Date: 08/31/07

Collection Date: 08/13/07 15:18

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	08/21/07 08:51 / jl
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	08/20/07 14:21 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/26/07 14:01 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/26/07 14:01 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/26/07 14:01 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/26/07 14:01 / dkh
Surr: 1,2-Dichlorobenzene-d4	103	%REC	8	30-120		SW8260B	08/26/07 14:01 / dkh
Surr: Dibromofluoromethane	100	%REC	7	70-130		SW8260B	08/26/07 14:01 / dkh
Surr; p-Bromofluorobenzene	104	%REC	8	30-120		SW8260B	08/26/07 14:01 / dkh
Surr: Toluene-d8	100	%REC	8	30-120		SW8260B	08/26/07 14:01 / dkh

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-028

Client Sample ID: TM4-63

Report Date: 08/31/07

Collection Date: 08/13/07 14:58

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	08/21/07 08:52 / ji
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	08/20/07 14:23 / lji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/26/07 14:40 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/26/07 14:40 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/26/07 14:40 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/26/07 14:40 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC	8	30-120		SW8260B	08/26/07 14:40 / dkh
Surr: Dibromofluoromethane	100	%REC	7	70-130		SW8260B	08/26/07 14:40 / dkh
Surr: p-Bromofluorobenzene	106	%REC	8	30-120		SW8260B	08/26/07 14:40 / dkh
Surr: Toluene-d8	100	%REC	8	30-120		SW8260B	08/26/07 14:40 / dkh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-029

Client Sample ID: TM4-65

Report Date: 08/31/07

Collection Date: 08/15/07 14:18

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS			, , , , , , , , , , , , , , , , , , , ,				"
Chloride	137	mg/L		1		A4500-Cl B	08/21/07 08:53 / ji
Nitrogen, Nitrate+Nitrite as N	4.0	mg/L		0.1		E353.2	08/20/07 14:26 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	19	ug/L		1.0		SW8260B	08/25/07 01:43 / dkh
Chloroform	27000	ug/L	D	500		SW8260B	08/26/07 15:18 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/25/07 01:43 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/25/07 01:43 / dkh
Surr: 1,2-Dichlorobenzene-d4	101	%REC		80-120		SW8260B	08/25/07 01:43 / dkh
Surr: Dibromofluoromethane	96.0	%REC		70-130		SW8260B	08/25/07 01:43 / dkh
Surr: p-Bromofluorobenzene	102	%REC		80-120		SW8260B	08/25/07 01:43 / dkh
Surr: Toluene-d8	103	%REC		80-120		SW8260B	08/25/07 01:43 / dkh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix interference.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-030

Client Sample ID: TM4-70

Report Date: 08/31/07

Collection Date: 08/15/07 13:58

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS						Washing Tallet	
Chloride	51	mg/L		1		A4500-CI B	08/21/07 08:54 / jl
Nitrogen, Nitrate+Nitrite as N	0.3	mg/L		0.1		E353.2	08/20/07 14:28 / Iji
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 16:24 / dkh
Chloroform	440	ug/L	Ð	100		SW8260B	08/26/07 15:56 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 16:24 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 16:24 / dkh
Surr: 1,2-Dichlorobenzene-d4	100	%REC		80-120		SW8260B	08/24/07 16:24 / dkh
Surr: Dibromofluoromethane	98.0	%REC		70-130		SW8260B	08/24/07 16:24 / dkh
Surr: p-Bromofluorobenzene	103	%REC		80-120		SW8260B	08/24/07 16:24 / dkh
Surr: Toluene-d8	101	%REC		80-120		SW8260B	08/24/07 16:24 / dkh

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Lab ID:

C07081008-031

Client Sample ID: Trip Blank

Report Date: 08/31/07

Collection Date: 08/15/07 15:24

DateReceived: 08/17/07

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	08/24/07 15:05 / dkh
Chloroform	ND	ug/L		1.0		SW8260B	08/24/07 15:05 / dkh
Chloromethane	ND	ug/L		1.0		SW8260B	08/24/07 15:05 / dkh
Methylene chloride	ND	ug/L		1.0		SW8260B	08/24/07 15:05 / dkh
Surr: 1,2-Dichlorobenzene-d4	104	%REC	8	80-120		SW8260B	08/24/07 15:05 / dkh
Surr: Dibromofluoromethane	99.0	%REC	;	70-130		SW8260B	08/24/07 15:05 / dkh
Surr: p-Bromofluorobenzene	108	%REC	{	30-120		SW8260B	08/24/07 15:05 / dkh
Surr: Toluene-d8	102	%REC	{	30-120		SW8260B	08/24/07 15:05 / dkh

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MCL - Maximum contaminant level.

Client: Denison Mines

Report Date: 08/31/07

Project: 3rd Quarter Chloroform Sampling Event

Work Order: C07081008

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-CI B							Batch	: 070821A-C	L-TTR-W
Sample ID: MBLK9-070821A Chloride	Method Blank ND	mg/L	0.4		Run: TITR	ATION_070821A		08/21/	/07 07:10
Sample ID: C07080987-015CMS Chloride	Sample Matrix 255	•	1.0	99	Run: TITRA	ATION_070821A 110		08/21/	/07 07:56
Sample ID: C07080987-015CMSD		mg/L Spike Duplicate	1.0	99		110 ATION_070821A		08/21/	/07 07:57
Chloride	255	mg/L	1.0	99	90	110	0.0	10	
Sample ID: LCS35-070821A Chloride	Laboratory Cor 3560	itrol Sample mg/L	1,0	100	Run: TITR/	ATION_070821A 110		08/21/	07 07:59
Sample ID: C07081008-010CMS	Sample Matrix	J		,,,,		ATION_070821A		08/21/	07 08:20
Chloride	109	mg/L	1.0	99	90	110			
Sample ID: C07081008-010CMSD Chloride	Sample Matrix 109	Spike Duplicate mg/L	1.0	99	Run: TITRA 90	ATION_070821A 110	0.0		07 08:21
Sample ID: C07081008-020CMS	Sample Matrix	J	1.0	99			0.0	10	07.00.00
Chloride	482	mg/L	1.0	100	90	ATION_070821A 110		U8/21/	07 08:39
Sample ID: C07081008-020CMSD Chloride	Sample Matrix	Spike Duplicate mg/L	1.0	100	Run: TITRA	ATION_070821A	0.0	08/21/ 10	07 08:40
Sample ID: C07081008-030CMS	Sample Matrix		1.0	100		TION_070821A	0.0	-	07 08:54
Chloride	122	mg/L	1.0	100	90	110		UQ/2 1/	U UO.04
Sample ID: C07081008-030CMSD Chloride	Sample Matrix : 122	Spike Duplicate mg/L	1.0	100	Run: TiTRA 90	ATION_070821A 110	0.0	08/21/ 10	07 08:55

Qualifiers:

RL - Analyte reporting limit.

Client: Denison Mines

Report Date: 08/31/07

Project: 3rd Quarter Chloroform Sampling Event

Work Order: C07081008

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method: E353.2						Ва	tch: A2	2007-08-20_1	_NO3_01
Sample ID: MBLK-1	Method Blank				Run: TECH	HNICON_070820	4	08/20	/07 12:31
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.03						
Sample ID: LCS-2	Laboratory Cor	ntrol Sample			Run: TECH	HNICON_070820	4	08/20	/07 12:33
Nitrogen, Nitrate+Nitrite as N	2.58	mg/L	0.10	103	90	110			
Sample ID: C07081008-004BMS	Sample Matrix	Spike			Run: TECH	INICON_070820/	4	08/20	/07 13:01
Nitrogen, Nitrate+Nitrite as N	4.96	mg/L	0.10	92	90	110			
Sample ID: C07081008-004BMSD	Sample Matrix	Spike Duplicate			Run: TEC	INICON_070820/	4	08/20	/07 13:03
Nitrogen, Nitrate+Nitrite as N	5.00	mg/L	0.10	94	90	110	8.0	10	
Sample ID: C07081008-015BMS	Sample Matrix	Spike			Run: TECH	HNICON_070820	4	08/20	/07 13:31
Nitrogen, Nitrate+Nitrite as N	3.09	mg/L	0.10	102	90	110			
Sample ID: C07081008-015BMSD	Sample Matrix	Spike Duplicate			Run: TECH	INICON_070820/	4	. 08/20	/07 13:33
Nitrogen, Nitrate+Nitrite as N	3.16	mg/L	0.10	106	90	110	2.2	10	
Sample ID: C07081008-024BMS	Sample Matrix	Spike			Run: TECH	INICON_070820	۹.	08/20	/07 14:11
Nitrogen, Nitrate+Nitrite as N	2.07	mg/L	0.10	103	90	110			
Sample ID: C07081008-024BMSD	Sample Matrix	Spike Duplicate			Run: TECH	HNICON_070820/	4	08/20	/07 14:13
Nitrogen, Nitrate+Nitrite as N	2.02	mg/L	0.10	101	90	110	2.4	10	

Qualifiers:

RL - Analyte reporting limit.

Client: Denison Mines

Report Date: .08/31/07

Project: 3rd Quarter Chloroform Sampling Event

Work Order: C07081008

							~		
Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Batch	n: R88635
Sample ID: 22-Aug-07_LCS_3	Laboratory Co	ntrol Sample			Run: GCM	S2_070822A		08/22	/07 11:36
Carbon tetrachloride	4.9	ug/L	1.0	98	70	130			
Chloroform	5.3	ug/L	1.0	106	70	130			
Chloromethane	5.0	ug/L	1.0	100	70	130			
Methylene chloride	5.0	ug/L	1.0	99	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	100	80	120			
Surr: Dibromofluoromethane			1.0	98	70	130			
Surr: p-Bromofluorobenzene			1.0	103	80	130			
Surr: Toluene-d8			1.0	102	80	120			
Sample ID: 221Aug-07_MBLK_6	Method Blank				Run: GCM	S2_070822A		08/22	/07 13:34
Carbon tetrachloride	ND	ug/L	0.5						
Chloroform	ND	ug/L	0.5						
Chloromethane	ND	ug/L	0.5						
Methylene chloride	ND	ug/L	0.5			*			
Surr: 1,2-Dichlorobenzene-d4				103	80	120			
Surr: Dibromofluoromethane				100	70	130			
Surr: p-Bromofluorobenzene				111	80	120			
Surr: Toluene-d8				102	80	120			
Sample ID: C07081008-002AMS	Sample Matrix	Spike			Run: GCM	S2_070822A		08/23	/07 04:51
Carbon tetrachloride	990	ug/L	50	99	70	130			
Chloroform	3300	ug/L	50	110	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	102	80	120			
Surr: Dibromofluoromethane			1.0	98	70	130			
Surr: p-Bromofluorobenzene			1.0	104	80	120			
Surr: Toluene-d8			1.0	100	80	120			
Sample ID: C07081008-002AMSD	Sample Matrix	Spike Duplicate			Run: GCM	S2_070822A		08/23	/07 05:31
Carbon tetrachloride	1100	ug/L	50	106	70	130	7.0	20	
Chloroform	3500	ug/L	50	122	70	130	3.6	20	
Surr: 1,2-Dichlorobenzene-d4			1.0	104	80	120	0.0	10	
Surr: Dibromofluoromethane			1.0	105	70	130	0.0	10	
Surr: p-Bromofluorobenzene			1.0	103	80	120	0.0	10	
Surr: Toluene-d8			1.0	102	80	120	0.0	10	

Qualifiers:

RL - Analyte reporting limit.

Client: Denison Mines

Report Date: 08/31/07

Project: 3rd Quarter Chloroform Sampling Event

Work Order: C07081008

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Batch	: R88704
Sample ID: 23-Aug-07_LCS_3	Laboratory Co	ntrol Sample			Run: GCM	S2_070823A		08/23	/07 11:27
Carbon tetrachloride	4.5	ug/L	1.0	90	70	130			
Chloroform	5.0	ug/L	1.0	99	70	130			
Chloromethane	4.3	ug/L	1.0	86	70	130			
Methylene chloride	4.7	ug/L	1.0	94	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	102	80	120			
Surr: Dibromofluoromethane			1.0	102	70	130			
Surr: p-Bromofluorobenzene			1.0	98	80	130			
Surr: Toluene-d8			1.0	100	80	120			
Sample ID: 23Aug-07_MBLK_6	Method Blank				Run: GCM	S2_070823A		08/23	/07 13:27
Carbon tetrachloride	ND	ug/L	0.5						
Chloroform	ND	ug/L	0.5						
Chloromethane	ND	ug/L	0.5						
Methylene chloride	ND	ug/L	0.5						
Surr: 1,2-Dichlorobenzene-d4				103	80	120			
Surr: Dibromofluoromethane				104	70	130			
Surr: p-Bromofluorobenzene				106	80	120			
Surr: Toluene-d8				101	80	120			
Sample ID: C07081008-022AMS	Sample Matrix	Spike			Run: GCM	S2_070823A		08/24	/07 08:17
Carbon tetrachloride	190	ug/L	10	97	70	130			
Chloroform	370	ug/L	10	113	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	100	80	120			
Surr: Dibromofluoromethane			1.0	105	70	130			
Surr: p-Bromofluorobenzene			1.0	102	80	120			
Surr: Toluene-d8			1.0	101	80	120			
Sample ID: C07081008-022AMSD	Sample Matrix	Spike Duplicate			Run: GCM	S2_070823A		08/24	/07 08:56
Carbon tetrachloride	200	ug/L	10	98	70	130	1.2	20	
Chloroform	350	ug/L	10	106	70	130	4.0	20	
Surr: 1,2-Dichlorobenzene-d4			1.0	102	80	120	0.0	10	
Surr: Dibromofluoromethane			1.0	101	70	130	0.0	10	
Surr: p-Bromofluorobenzene			1.0	100	80	120	0.0	10	
Surr: Toluene-d8			1.0	103	80	120	0.0	10	

Qualifiers:

RL - Analyte reporting limit.

Client: Denison Mines

Report Date: 08/31/07

Project: 3rd Quarter Chloroform Sampling Event

Work Order: C07081008

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								Batch	n: Æ88757
Sample ID: 24-Aug-07_LCS_3	Laboratory Co	ntrol Sample			Run: GCM	S2_070824A		08/24	/07 12:26
Carbon tetrachloride	4.5	ug/L	1.0	90	70	130			
Chloroform	5.0	ug/L	1.0	100	70	130			
Chloromethane	4.2	ug/L	1.0	85	70	130			
Methylene chloride	4.8	ug/L	1.0	96	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	117	80	120			
Surr: Dibromofluoromethane			1.0	102	70	130			
Surr: p-Bromofluorobenzene			1.0	116	80	130			
Surr: Toluene-d8			1.0	102	80	120			
Sample ID: 24Aug-07_MBLK_6	Method Blank				Run: GCM	S2_070824A		08/24	/07 14:25
Carbon tetrachloride	ND	ug/L	0.5						
Chloroform	ND	ug/L	0.5						
Chloromethane	ND	ug/L	0.5						
Methylene chloride	ND	ug/L	0.5					•	
Surr: 1,2-Dichlorobenzene-d4				106	80	120			
Surr: Dibromofluoromethane				101	70	130			
Surr: p-Bromofluorobenzene				110	80	120			
Surr: Toluene-d8				100	80	120			
Sample ID: C07081008-029AMS	Sample Matrix	: Spike			Run: GCM	S2_070824A		08/26	/07 16:35
Carbon tetrachloride	9400	ug/L	500	94	70	130			
Chloroform	36000	ug/L	500	88	70	130			
Surr: 1,2-Dichlorobenzene-d4			1.0	100	80	120			
Surr: Dibromofluoromethane			1.0	93	70	130			
Surr: p-Bromofluorobenzene			1.0	103	80	120			
Surr: Toluene-d8			1.0	101	80	120			
Sample ID: C07081008-029AMSD	Sample Matrix	Spike Duplicate			Run: GCM	52_070824A		08/26	/07 17:14
Carbon tetrachloride	9800	ug/L	500	98	70	130	3.8	20	
Chloroform	38000	ug/L	500	103	70	130	4.1	20	
Surr: 1,2-Dichlorobenzene-d4			1.0	102	80	120	0.0	10	
Surr: Dibromofluoromethane			1.0	94	70	130	0.0	10	
Surr: p-Bromofluorobenzene			1.0	102	80	120	0.0	10	
Surr: Toluene-d8			1.0	100	80	120	0.0	10	

Qualifiers:

RL - Analyte reporting limit.

Chain of Custody and Analytical Request Record PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side.

ENERGY LABORATORIES

Company Name: Oenison Mines (USA)		Project Name, PWS #, Permit #, Etc.:	Chloroform Sampling 1	olihe Event
Report Mail Address: P. O. Box	- 608 ×	Contact Name, Phone, Fax, E-mail:	Sampler Name if other	than S óntact:
Blanchine	Blanding () tak 84511	Charles Driv *	Kyr Physic	425-678-2231
Invoice Address:		# 2	Purchase Order	ELI Quote #:
-Same-		David Turk 435-	(268-817	
Report Required For: POTW/WWTP	TP O DW	ANALYSIS	a	Notify ELI prior to RUSH Shipped by:
	st be notified prior to	f Contained Solids Vege sy Other ay Oth	(TAT	
	1	qyT əl slio <u>g</u> 1) pun	19.24
EDD/EDT 🔲 Format		Sampl	nsmuT onsmu	
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Collection Date Time	MATRIX CHC	KINSH I	Signature Of N Match Match Lab ID
· MMH	8-15-07/NIS	5-W///		
2 TW4-1	0953			NO
1	1638) =
4-4-3	62H			Sí
4-4ml	HH60			Y MANAIMA
8 TW4-5	1338			7
3-4-6	10935			Т.
8-tml	100/			B (
8-HML &	1029			ВС
	1847	7		V -1
#X Custody Reliquished by (print):	Prince Statemen	Signature:	Received by (print):	T/\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
20 Record Reinquished by (print)	Date/Im	Signature:	Received by (print): Date/Time	me: Signature:
Signed Sample Disposal:	Return to client:	l ah Disnosal·	Sample Tune:	LABORATORY USE ONLY
o In certain circumstances, s	amples submitted to Energy L	aboratories, inc. may be subcontracted	ed laboratori	# of tractions moles from the state of the s

This serves as notice or this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, & links.

Chain of Custody and Analytical Request Record PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side.

ENERGY LABORATORIES

SI	8 (05/		Project Name, PWS # Permit #, Etc.: Srd (NUCF HET Contact Name, Phone, Fax, E-mail:	PWS# Permit	əmili #, Etc.: USF HPF (Fax. E-mail:	Chlar	े कि	A Jampier Nari	Alaroform Sampling Event	Even+	3
Blendire	Box 804	807 Utch 84511	- Prac	ه د ر	*	*	ر کے ق	0	67-78H J		•
Invoice Address:	1		Invoice Contact & Phone #:	X & Phone #:		1		Purchase Order #:	rder #: ELI Quote #:	Cluote #:	***************************************
-Same	() ()		David		435-678-333		下文 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Report Required For: POTW.	VTP []	[] Ma	08		NALYSIS REQUESTED	<u>ريد ا</u>		Noti	Notify ELI prior to RUSH sample submittal for additional	Shipped by:	سلخ
sport Fo	must be notified pring:	orior to	Contain V S W A : Solids <u>Veg</u> y Qiher	<u>ाठीका</u> <u>शेनकी</u> स्रोस्ट				<u> </u>	charges and scheduling		(S)
NELAC L. AZLA L.	Level IV L		eqγT e Soils/≳	14/ 214/						10.00	ريانه
EDD/EDT O Format		1	lqms2 Water) <u>E</u> [-						Custody Sea Intact	Z Z
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)		Collection Collection Date Time	Ari	THC Trough			SEE	IsmoM T H2UA		Signature Match Lab ID	<u></u> ć
1 TEM-10	1-8	8-15-07 132	5-1	111							
2 TEM-11		1050								N	
TWY-ID		OBSS		111) <u>=</u>	
*TW4-13		D40ct								sı	
*TEV4-14		0863								٨	
my-15		1358		1//						RC	
21-hmb		1059							77 W.D	-	SAN AND
"TWY-ID		1448								Y (
ZIMI-18		0,891)								98	
4-4-19		h2S1 /	<u> </u>	7						7 7	
Custody Reinquished	w (print):	Date/Time:		Signature	ائے۔ کیسر فا	Received by (print)	int):	2	Date/Time:	Signature //	4
-MUST be Reinquished 1)		}	Signature	5	Received by (print)	eut);		Date/line:	Signature:	
Signed Sample Disposal:		Return to client	Lab D	Lab Disposal:		Sample Type:) in	LAB	LABORATORY USE ONLY	ALY	
th certain circumstances, samples submitted to Energy	ides, samples sub		Laboratories, Inc. may be subcontracted to	ic. may be su	bcontracted	to other cer	tified labor	atories in o	Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis reminested	naliveie rominettad	

ints serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at www.energy/ab.com for additional information, downloadable fee schedule, forms, & links.

Chain of Custody and Analytical Request Record

ENERGY LABORATORIES

Page 3

PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side.

Company Name:		Project Name PWS # Bermit # Etc.		
Denison	Mines (USA)	3rd Olaster		2.
Report Mail Address:	F. C. Box 809	3, Phone, Fax,		
	Blandine Web 84511	Charles Onin	A R. D. Insc 426.679	1000
Invoice Address:	<u></u>	10ne #:	Purchase	ote #:
	- Same -	David Turk 435-628	Fax - 1202	
Report Required For.		ANALYSIS R	EQUESTED Notify EL! prior to RUSH sample submittal for additional	Shipped by:
Special Report Fo	Special Report Formats - ELI must be notified prior to sample submittal for the following:	γ S W. Ids <u>V</u> eg	(Cooler ID(s)
NELAC []	AZLA . Level IV	Type: A	fAT) bn	Receipt Terro
EDD/EDT Tormat	mat	Number Sample Sa	บดาลกาบ	Custody Seal Y N
SAMPLE IE (Name, Loca	SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) Date Time	:	SEE A	Signature //Y N Match
06-4~L	811/1 60-51-8	5-W ///		
TW-al	1 0005			N
TW-22	0111			D E
TW9-23	6976			sr
TW-94	2			人
TW-25	8-15-67 1183 +	1///		A Paraman
7M4-60	8-13-07 1518			1
29-HML.	8-13-07 1458			В
29-4ML	8/1/1627-8			98
3"TW4-70	8-18-07 1358			Α_
Custody	Relinquished by (print):	Signature:]. ;	Signature:
41-	Relinquished by (print):	Signature:	Received by (print): Date/Time:	Signature:
Signed OIB	Sample Disposal: Return to client:	tab Disposeli	LABORATORY USE ONLY	
	E	1 5	d to other certified laborates to a dark	

reances, sangues summered to energy Landratones, inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energy/ab.com for additional information, downloadable fee schedule, forms, & links.

Energy Laboratories Inc Workorder Receipt Checklist

Denison Mines (USA) Corp

C07081008

Login completed by: Kimberly Humiston		Date and Time	e Received: 8/17/2007 10:30 AM
Reviewed by:		R	eceived by: kh
Reviewed Date:		Ca	arrier name: Next Day Air
Shipping container/cooler in good condition?	Yes 🗹	№ 🗆	Not Present
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🔲	Not Present
Custody seals intact on sample bottles?	Yes 📋	No 🔲	Not Present ☑
Chain of custody present?	Yes 🔽	No 🔲	
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗀	
Samples in proper container/bottle?	Yes ☑	No 🔲	
Sample containers intact?	Yes ☑	No 🗀	•
Sufficient sample volume for indicated test?	Yes ☑	No 📋	
All samples received within holding time?	Yes ☑	No 🗌	
Container/Temp Blank temperature in compliance?	Yes 🗌	No ☑	12.2°C On Ice
Water - VOA vials have zero headspace?	Yes ☑	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗹	No 🔲	Not Applicable

Contact and Corrective Action Comments:

None

Date: 31-Aug-07

CLIENT:

Denison Mines

Project:

3rd Quarter Chloroform Sampling Event

Sample Delivery Group: C07081008

CASE NARRATIVE

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

PCB ANALYSIS USING EPA 505

Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT

eli-f - Energy Laboratories, Inc. - Idaho Falls, ID

eli-g - Energy Laboratories, Inc. - Gillette, WY

eli-h - Energy Laboratories, Inc. - Helena, MT

eli-r - Energy Laboratories, Inc. - Rapid City, SD

eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS:

USEPA: WY00002; FL-DOH NELAC: E87641; Arizona: AZ0699; California: 02118CA

Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side Chain of Custody and Analytical Request Record

Page of 3

NELAC [EDD/EDT | Format Other, sample submittal for the following: Report Required For: Report Mail Address: Special Report Formats - ELI must be notified prior to Invoice Address MUST be Signed Custody N4-8 Record かった人 any Name: J-4-1 カーナイ SAMPLE IDENTIFICATION W4-6 W4-5 (Name, Location, Interval, etc.) GN SO ノエー アナン 14-2 A2LA 🗖 Sample Disposal: linquished by (print) C. Box Samequished by (print) POTW/WWTP arles Level IV Return to client: <u>8</u>二 Collection Date 8 S S 1450 1450 Collection 445 こって 00 328 857 1429 Time Contact Name, Phone, Fax, E-mail Project Name, PWS #, Invoice Contact & Phone **Number of Containers** MATRIX Sample Type: AWSVBO Air Water Soils/Solids Vegetation Bioassay Other Lab Disposal: 0 Permit #, Etc.: var ter REQUES Received by (print): Received by (print): Sample Type: <u>o</u> rotoim SEE ATTACHED Normal Turnaround (TAT) Sampler Name if other than Contact: Purchase Order # und (TAT) Comments: Plan! mer RUSH Turnaround (TAT) sample submittal for additional LABORATORY USE ONLY
of fractions ____ Notify ELI prior to RUSH charges and scheduling ٦, Dampling 81 1 Date/Time: \mathcal{G} 678-222 0:30 ELI Quote # Kven Signature Match BORAT JSE Cooler,ID(s) ONLY ORY Intact Custody Sea Receipt Temp Lab ID Delias

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, & links

Chain of Custody and Analytical Request Record PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side.

Page 2 of 3

	LABORATORY USE ONLY	Sample Type:	Lab Disposal:	Return to client:	Sample Disposal:	nailBic
						Signed Signed
Signature:	Date/Time:	Received by (print):	Signature:		ed by (print):	Necola Cola
Signature:	B-12-9 10:30 (s	Received by (print):	Charles Opin	Fuin 8/15/07	Relinquished by (print):	Custody
L/				1824		6-h/11_01
В				0618		81-4ML,
)R				1448		11-4M
A Does Com				1059		31-4mT
OF				1358		51-hML
Y				23.80		5TW4-14
US				1980		*TW4-13
E				0355		3 TW4-12
N				1050		2 TW-11
LY			5-W //	8-15-07 1321 2		1 TW4-10
ē,	Norma	SEE	¤ CHO Ivo	Collection Collection Date Time	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	SAMPLE II (Name, Loca
Intact Y N		= AT	Samo	Num	mat	EDD/EDT ☐ Format
<u> </u>	aroun	TAG	ole Ty er <u>S</u> oi Bioa	ļ		Other
Receipt Temp	d (TAT)	CHEI	rpe: A Wils/Solidissay O	of Cor	sample submittal for the following: NELAC ☐ A2LA ☐ Level IV ☐	sample submittal
Cooler ID(s)		D	/SVE s <u>V</u> ege		ormats - ELI must be not	Special Report Fo
Shipped by:	Notify ELI prior to RUSH sample submittal for additional	REQUESTED	NALYS	DW 🔲	For: POTW/WWTP	Report Required For:
		1666/2018 2016/2018	Javid 435-678-22		Same	-
e#:	Purchase Order #: ELi Quote	,	invoice Contact & Phone#:	in.		Invoice Address:
192	Palmer 435-678-222	* Ryan	harles (huin)tal 84511	Blanding (
t g	Sampler Name if other than Contact:		Contact Name, Phone, Fax, E-mail:	809 °	X08 0.96	Report Mail Address:
7	form Sampline Event	Chloro for	Project Name, PWS # Permit #, Etc.:)SA) Pro	Mines /c	Company Name:

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, & links.

Chain of Custody and Analytical Request Record PLEASE PRINT, provide as much information as possible. Refer to corresponding notes on reverse side.

Page 3 of 3

	ONLY	LABORATORY USE ONLY # of fractions		Туре:	Sample Type:_		Lab Disposal:	Lab D	nt:	Return to client:	Sample Disposal:	Signea
Signaure:	<u> </u>	Vate/Ime:		, (buut):	received by (print):		Signature		Date/ IIme:		Reinquisned by (print):	MUST be
The Contraction		8-11-01_10.3)		į	Received by (bring)	V V.	1 es ()	Che	8/15/0-	nix	Charles (Custody Record
		Pota Piraca							-	8-50		107-40T
	\B(14/8	6-1507		
	DR.								1458	8-13-07		89-4ML.
e estado en estado e Estado en estado en e	AT								128	8-13-07		29-4ML.
CHOSIOS)	OF							+	0837	8-15-67	Wilder Street St	TW4-25
	Υ								112	←		HB-HMT
	US								676			TW4-23
	E (1110			CC-HMT.
	DN								825	1		my-21
	LΥ							5-W	1418	8-15-07		DC-1-1-1
Lab ID	Match		Norma RUSH	SEE				MATRIX	Collection Time	Collection Date	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	SAMPLE IDI (Name, Locat
Intact X N	Intact Signat		al Turna	- AT			Clz rate	Samp			at	EDD/EDT 🔲 Format
Custody Seally) N	E C		round	TAC			(Ch vic 1 . //					
apt Temp	R L		(TAT)	·UE			Ch Lite	e: A V		V .	for the following: A2LA□ Level IV□	sample submittal for the following:
er ID(s)	_્રે - 	charges and scheduling		<u> </u>			ro for d lor d	VSV ls <u>V</u> eg Other		notified prior t	Special Report Formats - ELI must be notified prior to	Special Report For
Shipped by:		Notify ELI prior to RUSH sample submittal for additional		2700FE	EQUES	SIS 7E	96 Z	B O getation			or: POTW/WWTP	Report Required For:
			~ ×	7500 7500 7500 7500 7500 7500 7500 7500	2021-	5-678	Tur (43	David			- Same	
	ELI Quote #:	Purchase Order #:	Purch	,	ļ		t & Phone #:	invoice Contact & Phone #	-		~	invoice Address:
72	678-22	Imer 435-1			*	から	es	harl	84511 (Utah !	Blanding	
\	ıct:	Sampler Name if other than Contact:	Samp			-mail:	Contact Name, Phone, Fax, E-mail:	ontact Name,	-	Box 809	P.O. Box	Report Mail Address:
ė.		ጛ	10 form	7		<u> </u>				A.)	Mines /US	Denison

in certain circumstances, samples submitted to Energy Laboratories, Inc. may be subconfracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, & links

Steve Landau

From:

Steve Landau [slandau@denisonmines.com]

Sent:

Tuesday, December 04, 2007 10:09 AM

To:

'Dane Finerfrock'

Subject:

3rd Quarter 2007 CSV Chloroform Data

Attachments: 3rd Q07C07081008.csv

Dear Mr. Finerfrock,

Attached to this email is an electronic copy of all laboratory results for chloroform monitoring conducted during the 3rd Quarter, 2007, in Comma Separated Value (CSV) format.

Yours truly, Steven D. Landau Manager of Environmental Affairs Denison Mines Corporation 1050 17th Street, Suite 950 Denver, CO 80265 (303) 389-4132 (303) 389-4125 Fax

Date of Sample 28-Sep-99	MW4	CHCl3 Values	Nitrate Values	Carrier Borne E
28-Sep-99			Titiale values	Sampling Event
I I		6200		Shallow Sample
28-Sep-99		5820		Deep Sample
28-Sep-99		6020		Total Sample
15-Mar-00		5520		Quarterly
15-Mar-00		5430		Quarterly
2-Sep-00		5420	9.63	Quarterly
30-Nov-00		6470	9.37	Quarterly & Split Sample
29-Mar-01		4360	8.77	Quarterly
22-Jun-01		6300	9.02	Quarterly
20-Sep-01		5300	9.45	Quarterly
8-Nov-01		5200	8	UDEQ Split Sampling Event
26-Mar-02		4700	8.19	First 1/4 2002 Sample
22-May-02		4300	8.21	Quarterly
12-Sep-02		6000	8.45	UDEQ Split Sampling Event
24-Nov-02		2500	8.1	Quarterly
28-Mar-03		2000	8.3	Quarterly
30-Apr-03		3300	NA	Well Pumping Event Sample
30-May-03		3400	8.2	Well Pumping Event Sample
23-Jun-03		4300	8.2	2nd Quarter Sampling Event
30-Jul-03		3600	8.1	Well Pumping Event Sample
29-Aug-03		4100	8.4	Well Pumping Event Sample
12-Sep-03		3500	8.5	3rd Quarter Sampling Event
15-Oct-03		3800	8.1	Well Pumping Event Sample
8-Nov-03		3800	8.0	4th Quarter Sampling Event
29-Mar-04			NA	Unable to purge/sample
22-Jun-04			NA	Unable to purge/sample
17-Sep-04		3300	6.71	3rd Quarter Sampling Event
17-Nov-04		4300	7.5	4th Quarter Sampling Event
16-Mar-05		2900	6.3	1st Quarter Sampling Event
25-May-05	·	3170	7.1	2nd Quarter Sampling Event
31-Aug-05		3500	7.0	3rd Quarter Sampling Event
1-Dec-05		3000	7.0	4th Quarter Sampling Event
9-Mar-06		3100	6.0	1st Quarter Sampling Event
14-Jun-06		3000	6.0	2nd Quarter Sampling Event
20-Jul-06		2820	1.2	3rd Quarter Sampling Event
9-Nov-06		2830	6.4	4th Quarter Sampling Event
15-Aug-07		2600	6.2	3rd Quarter Sampling Event

Date of Sample	TW4-1	CHCl3 Values	Nitrate Values	Sampling Event
28-Jun-99		1700	7.2	Quarterly
10-Nov-99		5.79		Quarterly
15-Mar-00		1100		Quarterly
10-Apr-00		1490		Grab Sample
6-Jun-00		1530		Quarterly
2-Sep-00		2320	5.58	Quarterly
30-Nov-00		3440	7.79	Quarterly & Split Sample
29-Mar-01		2340	7.15	Quarterly
22-Jun-01		6000	8.81	Quarterly
20-Sep-01			12.8	Quarterly
8-Nov-01		3200	12.4	UDEQ Split Sampling Event
26-Mar-02		3200	13.1	First 1/4 2002 Sample
22-May-02		2800	12.7	Quarterly
12-Sep-02		3300	12.8	UDEQ Split Sampling Event
24-Nov-02		3500	13.6	Quarterly
28-Mar-03		3000	12.4	Quarterly
23-Jun-03		3600	12.5	2nd Quarter Sampling Event
12-Sep-03		2700	12.5	3rd Quarter Sampling Event
8-Nov-03		3400	11.8	4th Quarter Sampling Event
29-Mar-04		3200	11	1st Quarter Sampling Event
22-Jun-04		3100	8.78	2nd Quarter Sampling Event
17-Sep-04		2800	10.8	3rd Quarter Sampling Event
17-Nov-04		3000	11.1	4th Quarter Sampling Event
16-Mar-05		2700	9.1	1st Quarter Sampling Event
25-May-05		3080	10.6	2nd Quarter Sampling Event
31-Aug-05		2900	9.8	3rd Quarter Sampling Event
1-Dec-05		2400	9.7	4th Quarter Sampling Event
9-Mar-06		2700	9.4	1st Quarter Sampling Event
14-Jun-06		2200	9.6	2nd Quarter Sampling Event
20-Jul-06		2840	9.2	3rd Quarter Sampling Event
8-Nov-06		2260	9.2	4th Quarter Sampling Event
15-Aug-07		2300	8.4	3rd Quarter Sampling Event

Date of Sample	TW4-2	CHCl3 Values	Nitrate Values	Sampling Event
10-Nov-99		2510		Quarterly
2-Sep-00		5220		Quarterly
28-Nov-00		4220	10.7	Quarterly & Split Sample
29-Mar-01		3890	10.2	Quarterly
22-Jun-01		5500	9.67	Quarterly
20-Sep-01		4900	11.4	Quarterly
8-Nov-01		5300	10.1	UDEQ Split Sampling Event
26-Mar-02		5100	9.98	First 1/4 2002 Sample
23-May-02		4700	9.78	Quarterly
12-Sep-02		6000	9.44	UDEQ Split Sampling Event
24-Nov-02		5400	10.4	Quarterly
28-Mar-03		4700	9.5	Quarterly
23-Jun-03		5100	9.6	2nd Quarter Sampling Event
12-Sep-03		3200	8.6	3rd Quarter Sampling Event
8-Nov-03		4700	9.7	4th Quarter Sampling Event
29-Mar-04		4200	9.14	1st Quarter Sampling Event
22-Jun-04		4300	8.22	2nd Quarter Sampling Event
17-Sep-04		4100	8.4	3rd Quarter Sampling Event
17-Nov-04		4500	8.6	4th Quarter Sampling Event
16-Mar-05		3700	7.7	1st Quarter Sampling Event
25-May-05		3750	8.6	2nd Quarter Sampling Event
31-Aug-05		3900	8.0	3rd Quarter Sampling Event
1-Dec-05		3500	7.8	4th Quarter Sampling Event
9-Mar-06		3800	7.5	1st Quarter Sampling Event
14-Jun-06		3200	7.1	2nd Quarter Sampling Event
20-Jul-06		4120	7.4	3rd Quarter Sampling Event
8-Nov-06		3420	7.6	4th Quarter Sampling Event
15-Aug-07		340	7.3	3rd Quarter Sampling Event

Date of Sample	TW4-3	CHCl3 Values	Nitrate Values	Sampling Event
28-Jun-99		3500	7.6	Quarterly
29-Nov-99		702		Quarterly
15-Mar-00		834		Quarterly
2-Sep-00		836	1.56	Quarterly
29-Nov-00		836	1.97	Quarterly & Split Sample
27-Mar-01	···	347	1.85	Quarterly
21-Jun-01		390	2.61	Quarterly
20-Sep-01		300	3.06	Quarterly
7-Nov-01		170	3.6	UDEQ Split Sampling Event
26-Mar-02		11	3.87	First 1/4 2002 Sample
21-May-02		204	4.34	Quarterly
12-Sep-02		203	4.32	UDEQ Split Sampling Event
24-Nov-02		102	4.9	Quarterly
28-Mar-03		ND	4.6	Quarterly
23-Jun-03		ND	4.8	2nd Quarter Sampling Event
12-Sep-03		ND	4.3	3rd Quarter Sampling Event
8-Nov-03		ND	4.8	4th Quarter Sampling Event
29-Mar-04		ND	4.48	1st Quarter Sampling Event
22-Jun-04		ND	3.68	2nd Quarter Sampling Event
17-Sep-04		ND	3.88	3rd Quarter Sampling Event
17-Nov-04		ND	4.1	4th Quarter Sampling Event
16-Mar-05		ND	3.5	1st Quarter Sampling Event
25-May-05		ND	3.7	2nd Quarter Sampling Event
31-Aug-05		ND	3.5	3rd Quarter Sampling Event
1-Dec-05		ND	3.3	4th Quarter Sampling Event
9-Mar-06		ND	3.3	1st Quarter Sampling Event
14-Jun-06		ND	3.2	2nd Quarter Sampling Event
20-Jul-06		ND	2.9	3rd Quarter Sampling Event
8-Nov-06		ND	1.5	4th Quarter Sampling Event
28-Feb-07		ND	3.1	1st Quarter Sampling Event
27-Jun-07		ND	3.3	2nd Quarter Sampling Event
15-Aug-2007		ND	3.1.	3rd Quarter Sampling Event

Date of Sample	TW4-4	CHCl3 Values	Nitrate Values	Sampling Event
6-Jun-00		ND		Initial
2-Sep-00		ND		Quarterly
28-Nov-00		3.85	1.02	Quarterly & Split Sample
28-Mar-01		2260	14.5	Quarterly
20-Jun-01		3100	14	Quarterly
20-Sep-01		3200	14.8	Quarterly
8-Nov-01		2900	15	UDEQ Split Sampling Event
26-Mar-02		3400	13.2	First 1/4 2002 Sample
22-May-02		3200	13.4	Quarterly
12-Sep-02		4000	12.6	UDEQ Split Sampling Event
24-Nov-02		3800	13.4	Quarterly
28-Mar-03		3300	12.8	Quarterly
23-Jun-03		3600	12.3	2nd Quarter Sampling Event
12-Sep-03		2900	12.3	3rd Quarter Sampling Event
8-Nov-03		3500	12.2	4th Quarter Sampling Event
29-Mar-04		3200	12.1	1st Quarter Sampling Event
22-Jun-04		3500	11.1	2nd Quarter Sampling Event
17-Sep-04		3100	10.8	3rd Quarter Sampling Event
17-Nov-04		3600	11.6	4th Quarter Sampling Event
16-Mar-05		3100	10	1st Quarter Sampling Event
25-May-05		2400	11.3	2nd Quarter Sampling Event
31-Aug-05		3200	9.9	3rd Quarter Sampling Event
1-Dec-05		2800	10.2	4th Quarter Sampling Event
9-Mar-06		2900	9.5	1st Quarter Sampling Event
14-Jun-06		2600	8.6	2nd Quarter Sampling Event
20-Jul-06		2850	9.7	3rd Quarter Sampling Event
8-Nov-06		2670	10.1	4th Quarter Sampling Event
28-Feb-07		22	9.0	1st Quarter Sampling Event
27-Jun-07		2400	9.4	2nd Quarter Sampling Event
15-Aug-07		2700	9.5	3rd Quarter Sampling Event

Date of Sample	TW4-5	CHCl3 Values	Nitrate Values	Sampling Event
20-Dec-99		29.5		Quarterly
15-Mar-00		49		Quarterly
2-Sep-00		124	.86	Quarterly
29-Nov-00		255	3.16	Quarterly & Split Sample
28-Mar-01	-	236	3.88	Quarterly
20-Jun-01		240	6.47	Quarterly
20-Sep-01		240	2.1	Quarterly
7-Nov-01		260	5.2	UDEQ Split Sampling Event
26-Mar-02		260	2.54	First 1/4 2002 Sample
22-May-02		300	3.05	Quarterly
12-Sep-02		330	4.61	UDEQ Split Sampling Event
24-Nov-02		260	1.1	Quarterly
28-Mar-03		240	1.9	Quarterly
23-Jun-03		290	3.2	2nd Quarter Sampling Event
12-Sep-03		200	4	3rd Quarter Sampling Event
8-Nov-03		240	4.6	4th Quarter Sampling Event
29-Mar-04		210	4.99	1st Quarter Sampling Event
22-Jun-04		200	4.78	2nd Quarter Sampling Event
17-Sep-04		150	4.79	3rd Quarter Sampling Event
17-Nov-04		180	5.1	4th Quarter Sampling Event
16-Mar-05		120	4.9	1st Quarter Sampling Event
25-May-05		113	3.7	2nd Quarter Sampling Event
31-Aug-05		82	6.0	3rd Quarter Sampling Event
1-Dec-05		63	6.0	4th Quarter Sampling Event
9-Mar-06		66	6.0	1st Quarter Sampling Event
14-Jun-06		51	5.9	2nd Quarter Sampling Event
20-Jul-06		53.70		3rd Quarter Sampling Event
8-Nov-06		47.10	2.9	4th Quarter Sampling Event
28-Feb-07		33	7.8	1st Quarter Sampling Event
27-Jun-07		26	7.0	2nd Quarter Sampling Event
15-Aug-07		9.2	7.7	3rd Quarter Sampling Event

Date of Sample	TW4-6	CHCl3 Values	Nitrate Values	Sampling Event
6-Jun-00		ND		Initial
2-Sep-00		ND		Quarterly
28-Nov-00		ND	ND	Quarterly & Split Sample
26-Mar-01		ND	.13	Quarterly
20-Jun-01		ND	ND	Quarterly
20-Sep-01		3.6	ND	Quarterly
7-Nov-01		ND	ND	UDEQ Split Sampling Event
26-Mar-02		ND	ND	First 1/4 2002 Sample
21-May-02		ND	ND	Quarterly
12-Sep-02		ND	ND	UDEQ Split Sampling Event
24-Nov-02		ND_	ND	Quarterly
28-Mar-03		ND	0.1	Quarterly
23-Jun-03		ND	ND	2nd Quarter Sampling Event
12-Sep-03		ND	ND	3rd Quarter Sampling Event
8-Nov-03		ND	ND	4th Quarter Sampling Event
29-Mar-04		ND	ND	1st Quarter Sampling Event
22-Jun-04		ND	ND	2nd Quarter Sampling Event
17-Sep-04		ND	ND	3rd Quarter Sampling Event
17-Nov-04		ND	ND	4th Quarter Sampling Event
16-Mar-05		ND	0.2	1st Quarter Sampling Event
25-May-05		2.5	0.4	2nd Quarter Sampling Event
31-Aug-05		10.0	0.5	3rd Quarter Sampling Event
1-Dec-05		17.0	0.9	4th Quarter Sampling Event
9-Mar-06		31.0	1.2	1st Quarter Sampling Event
14-Jun-06		19.0	1.0	2nd Quarter Sampling Event
20-Jul-06		11.00	0.6	3rd Quarter Sampling Event
8-Nov-06		42.80	1.4	4th Quarter Sampling Event
28-Feb-07		46	1.5	1st Quarter Sampling Event
27-Jun-07		0.11	0.6	2nd Quarter Sampling Event
15-Aug-07		18	0.7	3rd Quarter Sampling Event

Date of Sample	TW4-7	CHCl3 Values	Nitrate Values	Sampling Event
29-Nov-99		256		Quarterly
15-Mar-00		616		Quarterly
2-Sep-00		698		Quarterly
29-Nov-00		684	1.99	Quarterly & Split Sample
28-Mar-01		747	2.46	Quarterly
20-Jun-01		1100	2.65	Quarterly
20-Sep-01		1200	3.38	Quarterly
8-Nov-01		1100	2.5	UDEQ Split Sampling Event
26-Mar-02		1500	3.76	First 1/4 2002 Sample
23-May-02		1600	3.89	Quarterly
12-Sep-02		1500	3.18	UDEQ Split Sampling Event
24-Nov-02		2300	4.6	Quarterly
28-Mar-03		1800	4.8	Quarterly
23-Jun-03		5200	7.6	2nd Quarter Sampling Event
12-Sep-03		3600	7.6	3rd Quarter Sampling Event
8-Nov-03		4500	7.1	4th Quarter Sampling Event
29-Mar-04		2500	4.63	1st Quarter Sampling Event
22-Jun-04		2900	4.83	2nd Quarter Sampling Event
17-Sep-04		3100	5.59	3rd Quarter Sampling Event
17-Nov-04		3800	6	4th Quarter Sampling Event
16-Mar-05		3100	5.2	1st Quarter Sampling Event
25-May-05	=· ==	2700	5.4	2nd Quarter Sampling Event
31-Aug-05		3100	5.2	3rd Quarter Sampling Event
1-Dec-05		2500	5.3	4th Quarter Sampling Event
9-Mar-06	-	1900	1.0	1st Quarter Sampling Event
14-Jun-06		2200	4.5	2nd Quarter Sampling Event
20-Jul-06		2140	4.7	3rd Quarter Sampling Event
8-Nov-06		2160	4.6	4th Quarter Sampling Event
28-Feb-07		1800	5	1st Quarter Sampling Event
27-Jun-07		2600	5.1	2nd Quarter Sampling Event
15-Aug-07		2300	4.7	3rd Quarter Sampling Event

Date of Sample	TW4-8	CHCl3 Values	Nitrate Values	Sampling Event
29-Nov-99	0.00	ND	7.11.00	Quarterly
15-Mar-00	21.8	21.8		Quarterly
2-Sep-00	102	102		Quarterly
29-Nov-00	107	107	ND	Quarterly & Split Sample
26-Mar-01	116	116	ND	Quarterly
20-Jun-01	180	180	ND	Quarterly
20-Sep-01	180	180	0.35	Quarterly
7-Nov-01	180	180	ND	UDEQ Split Sampling Event
26-Mar-02	190	190	0.62	First 1/4 2002 Sample
22-May-02	210	210	0.77	Quarterly
12-Sep-02	300	300	ND	UDEQ Split Sampling Event
24-Nov-02	450	450	ND	Quarterly
28-Mar-03	320	320	0.8	Quarterly
23-Jun-03	420	420	ND	2nd Quarter Sampling Event
12-Sep-03	66	66	ND	3rd Quarter Sampling Event
8-Nov-03	21.0	21.0	0.1	4th Quarter Sampling Event
29-Mar-04	24	24	0.65	1st Quarter Sampling Event
22-Jun-04	110	110	0.52	2nd Quarter Sampling Event
17-Sep-04	120	120	ND	3rd Quarter Sampling Event
17-Nov-04	120	120	ND	4th Quarter Sampling Event
16-Mar-05	10.0	10.0	ND	1st Quarter Sampling Event
25-May-05	0.00	ND	0.2	2nd Quarter Sampling Event
31-Aug-05	1.1	1.1	ND	3rd Quarter Sampling Event
1-Dec-05	0.00	ND	ND	4th Quarter Sampling Event
9-Mar-06	1.3	1.3	0.3	1st Quarter Sampling Event
14-Jun-06	1.00	1.00	ND	2nd Quarter Sampling Event
20-Jul-06	0.00	ND	0.1	3rd Quarter Sampling Event
8-Nov-06	0.00	ND	ND	4th Quarter Sampling Event
28-Feb-07	2.50	2.50	0.7	1st Quarter Sampling Event
27-Jun-07		2.5	0.2	2nd Quarter Sampling Event
15-Aug-07		1.5	ND	3rd Quarter Sampling Event

Date of Sample	TW4-9	CHCl3 Values	Nitrate Values	Sampling Event
20-Dec-99	4.24	4.24		Quarterly
15-Mar-00	1.88	1.88		Quarterly
2-Sep-00	14.2	14.2		Quarterly
29-Nov-00	39.4	39.4	ND	Quarterly & Split Sample
27-Mar-01	43.6	43.6	ND	Quarterly
20-Jun-01	59	59	.15	Quarterly
20-Sep-01	19	19	0.40	Quarterly
7-Nov-01	49	49	0.1	UDEQ Split Sampling Event
26-Mar-02	41	41	0.5	First 1/4 2002 Sample
22-May-02	38	38	0.65	Quarterly
12-Sep-02	49	49	0.2	UDEQ Split Sampling Event
24-Nov-02	51	51	0.6	Quarterly
28-Mar-03	34	34	0.6	Quarterly
23-Jun-03	33	33	0.8	2nd Quarter Sampling Event
12-Sep-03	32	32	1.1	3rd Quarter Sampling Event
8-Nov-03	46	46	1.1	4th Quarter Sampling Event
29-Mar-04	48	48	0.82	1st Quarter Sampling Event
22-Jun-04	48	48	0.75	2nd Quarter Sampling Event
17-Sep-04	39	39	0.81	3rd Quarter Sampling Event
17-Nov-04	26	26	1.2	4th Quarter Sampling Event
16-Mar-05	3.8	3.8	1.3	1st Quarter Sampling Event
25-May-05	1.2	1.2	1.3	2nd Quarter Sampling Event
31-Aug-05	0	ND	1.3	3rd Quarter Sampling Event
1-Dec-05	0.0	ND	1.3	4th Quarter Sampling Event
9-Mar-06	0	ND	1.5	1st Quarter Sampling Event
14-Jun-06	0	ND	1.5	2nd Quarter Sampling Event
20-Jul-06	0.00	ND	0.9	3rd Quarter Sampling Event
8-Nov-06	0.00	ND	0.7	4th Quarter Sampling Event
28-Feb-07	0.00	ND	0.6	1st Quarter Sampling Event
27-Jun-07		21	1.3	2nd Quarter Sampling Event
15-Aug-07		9.5	1.8	3rd Quarter Sampling Event

Date of Sample	TW4-10	CHCl3 Values	Nitrate Values	Sampling Event
21-Jan-02		14		Initial Sample
26-Mar-02		16	0.14	First 1/4 2002 Sample
21-May-02		17	0.11	Quarterly
12-Sep-02		6.0	ND	UDEQ Split Sampling Event
24-Nov-02		14	ND	Quarterly
28-Mar-03		29	0.2	Quarterly
23-Jun-03		110	0.4	2nd Quarter Sampling Event
12-Sep-03		74	0.4	3rd Quarter Sampling Event
8-Nov-03		75	0.3	4th Quarter Sampling Event
29-Mar-04		22	0.1	1st Quarter Sampling Event
22-Jun-04		32	ND	2nd Quarter Sampling Event
17-Sep-04	*	63	0.46	3rd Quarter Sampling Event
17-Nov-04		120	0.4	4th Quarter Sampling Event
16-Mar-05		140	1.6	1st Quarter Sampling Event
25-May-05		62.4	0.8	2nd Quarter Sampling Event
31-Aug-05		110	1.1	3rd Quarter Sampling Event
1-Dec-05		300	3.3	4th Quarter Sampling Event
9-Mar-06		190	2.4	1st Quarter Sampling Event
14-Jun-06		300	3.5	2nd Quarter Sampling Event
20-Jul-06		504.00	6.8	3rd Quarter Sampling Event
8-Nov-06		452.00	5.7	4th Quarter Sampling Event
28-Feb-07		500	7.6	1st Quarter Sampling Event
27-Jun-07		350	5.1	2nd Quarter Sampling Event
15-Aug-07		660	7.3	3rd Quarter Sampling Event

Date of Sample	TW4-11	CHCl3 Values	Nitrate Values	Sampling Event
21-Jan-02		4700		Initial Sample
26-Mar-02		4900	9.60	First 1/4 2002 Sample
22-May-02		5200	9.07	Quarterly
12-Sep-02		6200	8.84	UDEQ Split Sampling Event
24-Nov-02		5800	9.7	Quarterly
28-Mar-03		5100	9.7	Quarterly
23-Jun-03		5700	9.4	2nd Quarter Sampling Event
12-Sep-03		4600	9.9	3rd Quarter Sampling Event
8-Nov-03		5200	9.3	4th Quarter Sampling Event
29-Mar-04		5300	9.07	1st Quarter Sampling Event
22-Jun-04		5700	8.74	2nd Quarter Sampling Event
17-Sep-04		4800	8.75	3rd Quarter Sampling Event
17-Nov-04		5800	9.7	4th Quarter Sampling Event
16-Mar-05		4400	8.7	1st Quarter Sampling Event
25-May-05		3590	10.3	2nd Quarter Sampling Event
31-Aug-05		4400	9.4	3rd Quarter Sampling Event
1-Dec-05		4400	9.4	4th Quarter Sampling Event
9-Mar-06		4400	9.2	1st Quarter Sampling Event
14-Jun-06		4300	10	2nd Quarter Sampling Event
20-Jul-06		4080	10	3rd Quarter Sampling Event
8-Nov-06		3660	10	4th Quarter Sampling Event
28-Feb-07		3500	10.1	1st Quarter Sampling Event
27-Jun-07		3800	10.6	2nd Quarter Sampling Event
15-Aug-07		4500	10.2	3rd Quarter Sampling Event

Date of Sample	TW4-12	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		1.5	2.54	UDEQ Split Sampling Event
24-Nov-02		0.00	2.2	Quarterly
28-Mar-03		0.00	1.9	Quarterly
23-Jun-03		0.00	1.8	2nd Quarter Sampling Event
12-Sep-03		0.00	1.8	3rd Quarter Sampling Event
9-Nov-03		ND	1.6	4th Quarter Sampling Event
29-Mar-04		ND	1.58	1st Quarter Sampling Event
22-Jun-04		ND	1.4	2nd Quarter Sampling Event
17-Sep-04		ND	1.24	3rd Quarter Sampling Event
17-Nov-04		ND	1.5	4th Quarter Sampling Event
16-Mar-05		ND	1.4	1st Quarter Sampling Event
25-May-05		ND	1.6	2nd Quarter Sampling Event
31-Aug-05		ND	1.5	3rd Quarter Sampling Event
1-Dec-05		ND	1.4	4th Quarter Sampling Event
9-Mar-06		ND	1.3	1st Quarter Sampling Event
14-Jun-06		ND	1.4	2nd Quarter Sampling Event
20-Jul-06		ND	1.4	3rd Quarter Sampling Event
8-Nov-06		ND	1.4	4th Quarter Sampling Event
28-Feb-07		ND	1.5	1st Quarter Sampling Event
27-Jun-07		ND	1.5	2nd Quarter Sampling Event
Aug-15-07		ND	1.4	3rd Quarter Sampling Event

		CHCI3		
Date of Sample	TW4-13	Values	Nitrate Values	Sampling Event
12-Sep-02		ND	ND	UDEQ Split Sampling Event
24-Nov-02		ND	ND	Quarterly
28-Mar-03		ND	0.2	Quarterly
23-Jun-03		ND	0.2	2nd Quarter Sampling Event
12-Sep-03		ND	ND	3rd Quarter Sampling Event
9-Nov-03		ND	0.9	4th Quarter Sampling Event
29-Mar-04		ND	0.12	1st Quarter Sampling Event
22-Jun-04		ND	0.17	2nd Quarter Sampling Event
17-Sep-04		ND	4.43	3rd Quarter Sampling Event
17-Nov-04		ND	4.7	4th Quarter Sampling Event
16-Mar-05		ND	4.2	1st Quarter Sampling Event
25-May-05		ND	4.3	2nd Quarter Sampling Event
31-Aug-05		ND	4.6	3rd Quarter Sampling Event
1-Dec-05		ND	4.3	4th Quarter Sampling Event
9-Mar-06		ND	4.2	1st Quarter Sampling Event
14-Jun-06		ND	4.9	2nd Quarter Sampling Event
20-Jul-06		ND	4.3	3rd Quarter Sampling Event
8-Nov-06		ND	0.8	4th Quarter Sampling Event
28-Feb-07		ND	4	1st Quarter Sampling Event
27-Jun-07		ND	4.6	2nd Quarter Sampling Event
15-Aug-07		ND	4.4	3rd Quarter Sampling Event

Date of Sample	TW4-15	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		2.6	ND	UDEQ Split Sampling Event
24-Nov-02		ND	ND	Quarterly
28-Mar-03		ND	0.1	Quarterly
23-Jun-03		7800	14.5	2nd Quarter Sampling Event
15-Aug-03		7400	16.8	Well Pumping Event Sample
12-Sep-03		2500	2.7	3rd Quarter Sampling Event
25-Sep-03		2600	2.5	Well Pumping Event Sample
29-Oct-03		3100	3.1	Well Pumping Event Sample
8-Nov-03		3000	2.8	4th Quarter Sampling Event
29-Mar-04		NA	NA	Unable to purge/sample
22-Jun-04		NA	NA	Unable to purge/sample
17-Sep-04		1400	0.53	3rd Quarter Sampling Event
17-Nov-04		300	0.2	4th Quarter Sampling Event
16-Mar-05		310	0.3	1st Quarter Sampling Event
30-Mar-05		230	0.2	1st Quarter POC Sampling
25-May-05		442	0.2	2nd Quarter Sampling Event
31-Aug-05		960	0.2	3rd Quarter Sampling Event
1-Dec-05		1000	0.3	4th Quarter Sampling Event
9-Mar-06		1100	0.2	1st Quarter Sampling Event
14-Jun-06		830	0.2	2nd Quarter Sampling Event
20-Jul-06		2170	1.4	3rd Quarter Sampling Event
8-Nov-06		282	0.3	4th Quarter Sampling Event
28-Feb-07		570	0.5	1st Quarter Sampling Event
27-Jun-07		300	0.4	2nd Quarter Sampling Event
15-Aug-07	-	1400	1	3rd Quarter Sampling Event

Date of Sample	TW4-16	CHCl3 Values	Nitrate	0 " 5
	1 W 4-10		Values	Sampling Event
12-Sep-02		140	ND	UDEQ Split Sampling Event
24-Nov-02		200	ND	Quarterly
28-Mar-03		260	ND	Quarterly
23-Jun-03		370	ND	2nd Quarter Sampling Event
12-Sep-03		350	ND	3rd Quarter Sampling Event
8-Nov-03		400	ND	4th Quarter Sampling Event
29-Mar-04		430	ND	1st Quarter Sampling Event
22-Jun-04		530	ND	2nd Quarter Sampling Event
17-Sep-04		400	ND	3rd Quarter Sampling Event
17-Nov-04		350	ND	4th Quarter Sampling Event
16-Mar-05		240	ND	1st Quarter Sampling Event
25-May-05		212	ND	2nd Quarter Sampling Event
31-Aug-05		85	ND	3rd Quarter Sampling Event
1-Dec-05		14	1.4	4th Quarter Sampling Event
9-Mar-06		39	3.0	1st Quarter Sampling Event
14-Jun-06		13	1.9	2nd Quarter Sampling Event
20-Jul-06		5	2.7	3rd Quarter Sampling Event
8-Nov-06		13.6	5.6	4th Quarter Sampling Event
28-Feb-07		8.70	12.3	1st Quarter Sampling Event
27-Jun-07		2.60	9.9	2nd Quarter Sampling Event
15-Aug-07		7.10	5.4	3rd Quarter Sampling Event

Date of Sample	TW4-17	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		1.6	ND	UDEQ Split Sampling Event
24-Nov-02		ND	ND	Quarterly
28-Mar-03		ND	ND	Quarterly
23-Jun-03		ND	ND	2nd Quarter Sampling Event
12-Sep-03		ND	ND	3rd Quarter Sampling Event
8-Nov-03		ND	ND	4th Quarter Sampling Event
29-Mar-04		ND	ND	1st Quarter Sampling Event
22-Jun-04		ND	ND	2nd Quarter Sampling Event
17-Sep-04		ND	ND	3rd Quarter Sampling Event
17-Nov-04	·	ND	ND	4th Quarter Sampling Event
16-Mar-05		ND	ND	1st Quarter Sampling Event
30-Mar-05	-	ND	ND	1st Quarter POC Sampling
25-May-05		ND_	ND	2nd Quarter Sampling Event
31-Aug-05		ND	ND	3rd Quarter Sampling Event
1-Dec-05		ND	ND	4th Quarter Sampling Event
9-Mar-06		ND	ND	1st Quarter Sampling Event
14-Jun-06		ND	ND	2nd Quarter Sampling Event
20-Jul-06		ND	ND	3rd Quarter Sampling Event
8-Nov-06		ND	ND	4th Quarter Sampling Event
28-Feb-07		ND	ND	1st Quarter Sampling Event
27-Jun-07		ND	ND	2nd Quarter Sampling Event
15-Aug-07		ND	ND	3rd Quarter Sampling Event

. .

Date of Sample	TW4-18	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		440	1.49	UDEQ Split Sampling Event
24-Nov-02		240	13.3	Quarterly
28-Mar-03		160	13.1	Quarterly
23-Jun-03		110	19	2nd Quarter Sampling Event
12-Sep-03		68	19.9	3rd Quarter Sampling Event
9-Nov-03		84	20.7	4th Quarter Sampling Event
29-Mar-04		90	14	1st Quarter Sampling Event
22-Jun-04		82	12.2	2nd Quarter Sampling Event
17-Sep-04		38	14.5	3rd Quarter Sampling Event
17-Nov-04		51	17.3	4th Quarter Sampling Event
16-Mar-05		38	14.1	1st Quarter Sampling Event
25-May-05		29.8	12.9	2nd Quarter Sampling Event
31-Aug-05		39	13.3	3rd Quarter Sampling Event
1-Dec-05		14	7.3	4th Quarter Sampling Event
9-Mar-06		12	5.9	1st Quarter Sampling Event
14-Jun-06		12	4.7	2nd Quarter Sampling Event
20-Jul-06		10.80	6.1	3rd Quarter Sampling Event
8-Nov-06		139.00	8.7	4th Quarter Sampling Event
28-Feb-07		9.2	5.1	1st Quarter Sampling Event
27-Jun-07		8.0	4.9	2nd Quarter Sampling Event
15-Aug-07		8.9	5.0	3rd Quarter Sampling Event

Date of Sample	TW4-19	CHCl3 Values	Nitrate Values	Sampling Event
12-Sep-02		7700	47.6	UDEQ Split Sampling Event
24-Nov-02		5400	42	Quarterly
28-Mar-03		4200	61.4	Quarterly
15-May-03		4700	NA	Well Pumping Event Sample
23-Jun-03		4500	11.4	2nd Quarter Sampling Event
15-Jul-03		2400	6.8	Well Pumping Event Sample
15-Aug-03		2600	4	Well Pumping Event Sample
12-Sep-03		2500	5.7	3rd Quarter Sampling Event
25-Sep-03		4600	9.2	Well Pumping Event Sample
29-Oct-03		4600	7.7	Well Pumping Event Sample
9-Nov-03		2600	4.8	4th Quarter Sampling Event
29-Mar-04			NA	Unable to purge/sample
22-Jun-04			NA	Unable to purge/sample
16-Aug-04		7100	9.91	Well Pumping Event Sample
17-Sep-04		2600	4.5	3rd Quarter Sampling Event
17-Nov-04		1800	3.6	4th Quarter Sampling Event
16-Mar-05		2200	5.3	1st Quarter Sampling Event
25-May-05		1200	5.7	2nd Quarter Sampling Event
31-Aug-05		1400	4.6	3rd Quarter Sampling Event
1-Dec-05		2800	ND	4th Quarter Sampling Event
9-Mar-06		1200	4.0	1st Quarter Sampling Event
14-Jun-06		1100	5.2	2nd Quarter Sampling Event
20-Jul-06		1120	4.3	3rd Quarter Sampling Event
8-Nov-07		1050	4.6	4th Quarter Sampling Event
28-Feb-07		1200	4	1st Quarter Sampling Event
27-Jun-07		1800	2.3	2nd Quarter Sampling Event
15-Aug-07		1100	4.1	3rd Quarter Sampling Event

Date of Sample	TW4-20	CHCl3 Values	Nitrate Values	Sampling Event
25-May-05		39000	10.1	2nd Quarter Sampling Event
31-Aug-05		3800	2.9	3rd Quarter Sampling Event
1-Dec-05		19000	1.8	4th Quarter Sampling Event
9-Mar-06		9200	3.8	1st Quarter Sampling Event
14-Jun-06		61000	9.4	2nd Quarter Sampling Event
20-Jul-06		5300	2.9	3rd Quarter Sampling Event
8-Nov-06		11000	3.5	4th Quarter Sampling Event
28-Feb-07		4400	4.2	1st Quarter Sampling Event
27-Jun-07		1800	2.3	2nd Quarter Sampling Event
15-Aug-07		5200	2.1	3rd Quarter Sampling Event

Date of Sample	TW4-21	CHCl3 Values	Nitrate Values	Sampling Event
25-May-05		192	14.6	2nd Quarter Sampling Event
31-Aug-05		78	10.1	3rd Quarter Sampling Event
1-Dec-05		86	9.6	4th Quarter Sampling Event
9-Mar-06		120	8.5	1st Quarter Sampling Event
14-Jun-06		130	10.2	2nd Quarter Sampling Event
20-Jul-06		106	8.9	3rd Quarter Sampling Event
8-Nov-06		12.5	5.7	4th Quarter Sampling Event
28-Feb-07		160	8.7	1st Quarter Sampling Event
27-Jun-07		300.0	8.6	2nd Quarter Sampling Event
15-Aug-07		140.0	8.6	3rd Quarter Sampling Event

Date of Sample	TW4-22	CHCl3 Values	Nitrate Values	Sampling Event
25-May-05		340	18.2	2nd Quarter Sampling Ever
31-Aug-05		290	15.7	3rd Quarter Sampling Ever
1-Dec-05		320	15.1	4th Quarter Sampling Ever
9-Mar-06		390	15.3	1st Quarter Sampling Ever
06/14/06		280	14.3	2nd Quarter Sampling Eve
07/20/06		864	14.5	3rd Quarter Sampling Even
11/08/06		350	15.9	4th Quarter Sampling Even
28-Feb-07		440	20.9	1st Quarter Sampling Even
06/27/07		740	19.3	2nd Quarter Sampling Ever
Aug-15-07		530	19.3	3rd Quarter Sampling Even

•

MW-4 Chloroform Values

DATA FOR TW4-13 ARE ALL NON-DETECT FOR CHLOROFORM

Therefore the Data are not graphed

TW4-22 - Chloroform Values

TW4-22 - Chloroform Values

Chloroform Investigation Wells - Daily Inspection Report	Date	Abnormal Operation or Potential Problems								,	
		Pump Operational (mark OK or note orthogonal			· · · · · · · · · · · · · · · · · · ·	•				·	
		Flow Meter Operational (mark OK or note otherwise)		۰							
		Heat Lamp Operational Status (mark OK or note otherwise)		•				,			-2, was
efinatio		Electrical System (mark OK or note otherwise)		•							
Chloroform Inve											
		Weather and Temp.			·	·					
	А.	Inspector						-			
		Тіте									
		Inspection No.	qua.	Ø	ത	4	Ŋ	ဖ	7	œ	